Skip to main content

The linear systems lie algebra, the Segal-Shale-Weil representation and all Kalman-Bucy filters

  • Conference paper
  • First Online:
Mathematical Theory of Networks and Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 58))

Abstract

Let ls n be the real Lie algebra of all differential operators in n-variables ∑c αβ x αβ / ∂x β, c αβ∈ R where the sum is over all multi-indices α, β such that |α| + |β| ≤ 2. This note describes a certain representation of ls n by means of (nonlinear) vectorfields which in a certain sense is all Kalman-Bucy filters for ndimensional linear systems put together. This representation also turns out to be very closely related to the so-called Segal-Shale-Weil representation of the simple quotient sp n of ls n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Brockett, J.M.C. Clark, The geometry of the conditional density equations, Proc of the Oxford Conf. on Stochastic Systems 1978, Acad. Press 1980.

    Google Scholar 

  2. R.W. Brockett, Geometric methods in stochastic control and estimation. In [5], 441–478.

    Google Scholar 

  3. M. Hazewinkel, S.I. Marcus, On Lie algebras and nonlinear filtering, Stochastics 7 (1982), 29–62.

    Google Scholar 

  4. M. Hazewinkel, The linear systems Lie algebra, the Segal-Shale-Weil representation and all Kalman Bucy filters. Report 8130, Econometric Inst., Erasmus Univ. Rotterdam Submitted Amer. J. Math

    Google Scholar 

  5. M. Hazewinkel, J.C. Willems (eds), Stochastic systems: the mathematics of filtering and identification and applications, Reidel Publ. G., 1981.

    Google Scholar 

  6. R.E. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. 3 (1980), 821–844.

    Google Scholar 

  7. R.E. Howe, v-series and invariant theory, Proc. Symp. Pure Math. 33, 1, 275–285, Amer. Math. Soc. 1980.

    Google Scholar 

  8. M. Kashiwara, M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Inv. Math. 44 (1978), 1–47.

    Google Scholar 

  9. G. Lion, M. Vergne, The Weil representation, Maslow index and Theta series, Birkhäuser, 1980.

    Google Scholar 

  10. S.K. Mitter, Nonlinear filtering and stochastic mechanics. In [5], 479–504. And references therein.

    Google Scholar 

  11. S. Rallis, G. Schiffmann, Weil representation I. Memoirs Amer. Math. Soc. 231 (1980).

    Google Scholar 

  12. I.E. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian group, Math. Scand. 13 (1963), 31–43.

    Google Scholar 

  13. D. Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Sco. 103 (1962), 149–167.

    Google Scholar 

  14. A. Weil, Sur certains groupes d'operateurs unitaires, Collected Papers Vol.III 1–71, Springer, 1980; Comments: ibid 443–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. A. Fuhrmann

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this paper

Cite this paper

Hazewinkel, M. (1984). The linear systems lie algebra, the Segal-Shale-Weil representation and all Kalman-Bucy filters. In: Fuhrmann, P.A. (eds) Mathematical Theory of Networks and Systems. Lecture Notes in Control and Information Sciences, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0031072

Download citation

  • DOI: https://doi.org/10.1007/BFb0031072

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13168-7

  • Online ISBN: 978-3-540-38826-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics