Skip to main content

Molecular characteristics of amiloride-sensitive sodium channels

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 120

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramcheck FJ, Van Driessche W, Helman SI (1985) Autoregulation of apical membrane Na+ permeability of tight epithelia. J Gen Physiol 85:555–582

    Article  PubMed  Google Scholar 

  • Agnew WS, Levinson SR, Brabson JS, Raftery MA (1978) Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci USA 75:2606–2610

    PubMed  Google Scholar 

  • App EM, King M, Helfesrieder R, Kohler D, Matthys H (1990) Acute and long-term amiloride inhalation in cystic fibrosis lung disease: a rational approach to cystic fibrosis therapy (Abstr). Am Rev Respir Dis 141:605–612

    PubMed  Google Scholar 

  • Asher C, Cragoe EJ Jr, Garty H (1987) Effects of amiloride analogs on Na+ transport in toad bladder membrane vesicles: evidence for two electrogenic transporters with different affinities towards pyrazinecarboxamides. J Biol Chem 262:8566–8573

    PubMed  Google Scholar 

  • Ausiello DA, Stow JL, Cantiello HF, Benos DJ (1992) Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive Gαi−3 protein. J Biol Chem 267:4759–4765

    PubMed  Google Scholar 

  • Avenet P, Lindemann B (1988) Amiloride-blockable sodium currents in isolated taste receptor cells. J Membr Biol 105:245–255

    Article  PubMed  Google Scholar 

  • Barbry P, Frelin C, Vigne P, Cragoe EJ Jr, Lazdunski M (1986) [3H]phenamil, a radiolabelled diuretic for the analysis of the amiloride-sensitive Na+ channels in kidney membranes. Biochem Biophys Res Commun 135:25–32

    Article  PubMed  Google Scholar 

  • Barbry P, Chassande O, Vigne P, Frelin C, Ellory C, Cragoe EJ Jr, Lazdunski M (1987) Purification and subunit structure of the [3H] phenamil receptor associated with the renal apical Na+ channel. Proc Natl Acad Sci USA 84:4836–4840

    PubMed  Google Scholar 

  • Barbry P, Chassande O, Duval C, Rousseau B, Frelin C, Lazdunski M (1989) Biochemical identification of two types of phenamil binding sites associated with amiloride-sensitive Na+ channels. Biochemistry 28:3744–3749

    Article  PubMed  Google Scholar 

  • Barbry P, Champe M, Chassande O, Munemitsu S, Champigny G, Lingueglia E, Maes P, Frelin C, Tartar A, Ullrich A, Lazdunski M (1990a) Human kidney amiloride-binding protein: cDNA structure and functional expression. Proc Natl Acad Sci USA 87:7347–7351

    PubMed  Google Scholar 

  • Barbry P, Chassande O, Marsault R, Lazdunski M, Frelin C (1990b) [3H] phenamil binding protein of the renal epithelium sodium channel. Purification, affinity labeling and functional reconstitution. Biochemistry 29:1039–1045

    Article  PubMed  Google Scholar 

  • Barbry P, Simon-Bouy B, Mattei M-G, Le Guern E, Jaume-Roig B, Chassande O, Ullrich A, Lazdunski M (1990c) Localization of the gene for amiloride binding protein on chromosome 7 and RFLP analysis in cystic fibrosis families. Hum Genet 85:587–589

    Article  PubMed  Google Scholar 

  • Baxendale LM, Helman SI (1986) Sodium concentration dependence of apical membrane single channel Na+ current and density of nondepolarized frog skin (three state model). Biophys J 49:106a

    Google Scholar 

  • Benos DJ (1982) Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol 242:C131–C145

    PubMed  Google Scholar 

  • Benos DJ (1983) Ionic channels in epithelia. Commun Mol Cell Biophys 2:111–128

    Google Scholar 

  • Benos DJ (1988) Amiloride: chemistry, kinetics, and structure-activity relationships, In: Grinstein S (ed) Na+/H+ exchange. CRC Uniscience, Boca Raton, pp 121–136

    Google Scholar 

  • Benos DJ (1989) The biology of amiloride-sensitive sodium channels. Hosp Pract [off] 24:149–164

    Google Scholar 

  • Benos DJ (1991) Purification of an epithelial sodium channel: vasopressin-dependent subunit phosphorylation, Jard S, Jamison R (eds) Vasopressin. Libbey Eurotext, Paris, pp 125–134 (Colloque INSERM, vol 208)

    Google Scholar 

  • Benos DJ, Mandel LJ (1978) Irreversible inhibition of sodium entry sites in frog skin by a photosensitive amiloride analog. Science 199:1205–1206

    PubMed  Google Scholar 

  • Benos DJ, Simon SA, Mandel LJ, Cala PM (1976) Effect of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid membranes. J Gen Physiol 68:43–63

    Article  PubMed  Google Scholar 

  • Benos DJ, Mandel LJ, Balaban RS (1979) On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol 73:307–326

    Article  PubMed  Google Scholar 

  • Benos DJ, Mandel LJ, Simon SA (1980) Cationic selectivity and competition at the sodium entry site in frog skin. J Gen Physiol 76:233–247

    Article  PubMed  Google Scholar 

  • Benos D, Latorre R, Reyes J (1981) Surface potentials and sodium entry in frog skin epithelium. J Physiol (Lond) 321:163–174

    PubMed  Google Scholar 

  • Benos DJ, Hyde BA, Latorre R (1983a) Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin. J Gen Physiol 81:667–685

    Article  PubMed  Google Scholar 

  • Benos DJ, Reyes J, Shoemaker DG (1983b) Amiloride fluxes across erythrocyte membranes. Biochim Biophys Acta 734:99–104

    PubMed  Google Scholar 

  • Benos DJ, Saccomani G, Brenner BM, Sariban-Sohraby S (1986) Purification and characterization of the amiloride-sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc Natl Acad Sci USA 83:8525–8529

    PubMed  Google Scholar 

  • Benos DJ, Saccomani G, Sariban-Sohraby S (1987) The epithelial sodium channel: subunit number and location of amiloride binding site. J Biol Chem 262:10613–10618

    PubMed  Google Scholar 

  • Benos DJ, Warnock DG, Smith JB (1991) Amiloride-sensitive transport mechanism. In: Giebisch G, Ussing HH, Kristensen P, Schafer JA (eds) Membrane transport in biology, vol 5. Academic, New York (in press)

    Google Scholar 

  • Besterman JM, May WS Jr, Le Vine H III, Cragoe EJ Jr, Cuatrecasas P (1985) Amiloride inhibits phorbol ester-stimulated Na+/H+ exchange and protein kinase C. J Biol Chem 260:1155–1159

    PubMed  Google Scholar 

  • Biber TUL (1971) Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J Gen Physiol 58:131–144

    Article  PubMed  Google Scholar 

  • Biber TUL, Curran PF (1970) Direct measurement of uptake of sodium at the outer surface of the frog skin. J Gen Physiol 56:83–99

    Article  PubMed  Google Scholar 

  • Biber TUL, Chez RA, Curran PF (1966) Na transport across frog skin at low external Na concentration. J Gen Physiol 49:1161–1176

    PubMed  Google Scholar 

  • Blazer-Yost B, Cox M, Furlanetto R (1989) Insulin and IGF1 receptor mediated sodium transport in toad urinary bladders. Am J Physiol 257:C612–C620

    PubMed  Google Scholar 

  • Bodoia RD, Detwiler PB (1985) Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J Physiol (Lond) 367:183–216

    PubMed  Google Scholar 

  • Boekhoff I, Tareilus E, Strotmann J, Breer H (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J 9:2453–2458

    PubMed  Google Scholar 

  • Boucher RC, Stutts MJ, Gatzy JT (1981) Regional differences in canine airway epithelial ion transport. J Appl Physiol 54:706–714

    Google Scholar 

  • Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1985) Na+ transport in cystic fibrosis nasal epithelia: abnormal basal rate and response to adenylate cyclase activation (Abstr). Clin Res 33:467

    Google Scholar 

  • Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT (1986) Na+ transport in cystic fibrosis (CF) respiratory epithelia. J Clin Invest 78:1245–1252

    PubMed  Google Scholar 

  • Boucher RC, James MK, Friedman M, Fulton J, Pimmel R, Gatzy JT (1987) Acute cardiovascular and pulmonary effects of intravenous and aerosolized amiloride in the dog (abstract). Toxicol Appl Pharmacol 87:264–275

    Article  PubMed  Google Scholar 

  • Brand JG, Teeter JH, Silver WL (1985) Inhibition by chorda tympani responses evoked by monovalent salts. Brain Res 334:207–214

    Article  PubMed  Google Scholar 

  • Bridges RJ, Garty H, Benos DJ, Rummel W (1988) Sodium uptake into colonic enterocyte membrane vesicles. Am J Physiol 254:C484–C490

    PubMed  Google Scholar 

  • Brown A, Birnbaumer L (1988) Signal transduction by G proteins. Am J Physiol 254:H401–H410

    PubMed  Google Scholar 

  • Brown D, Sorscher EJ, Ausiello D, Benos D (1989) Immunocytochemical localization of sodium channels in rat kidney medulla. Am J Physiol 256:F366–F369

    PubMed  Google Scholar 

  • Cala PM, Cogswell N, Mandel LJ (1978) Binding of [3H]ouabain to split frog skin: the role of the Na, K-ATPase in the generation of the short circuit current. J Gen Physiol 71:347–367

    Article  PubMed  Google Scholar 

  • Cantiello HF, Ausiello DA (1986) Atrial natriuretic factor and cGMP inhibit amiloride sensitive Na+ transport in the cultured renal epithelial cell line, LLC-PK1. Biochem Biophys Res Commun 134:852–860

    Article  PubMed  Google Scholar 

  • Cantiello HF, Patenaude CR, Ausiello DA (1989) G protein subunit, α i−3, activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6. J Biol Chem 264:20867–20870

    PubMed  Google Scholar 

  • Cantiello HF, Patenaude CR, Codina J, Birnbaumer L, Ausiello DA (1990) Gα i−3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways. J Biol Chem 265:21624–21628

    PubMed  Google Scholar 

  • Cantiello HF, Stow JL, Ausiello DA (1991) Cortical actin filaments co-localize with and regulate apical epithelial Na+ channels in A6 cells (Abstr). FASEB J 5:A690

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  PubMed  Google Scholar 

  • Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Article  PubMed  Google Scholar 

  • Catterall WA (1988) Structure and function of voltage-sensitive ion channels. Science 245:50–61

    Google Scholar 

  • Cereijido M, Curran PF (1965) Intracellular electrical potentials in frog skin. J Gen Physiol 48:543–557

    Article  PubMed  Google Scholar 

  • Cereijido M, Herrera FC, Flanigan WJ, Curran PF (1964) The influence of Na concentration on the Na transport across frog skin. J Gen Physiol 47:879–893

    Article  PubMed  Google Scholar 

  • Chase HS Jr (1984) Does calcium couple the apical and basolateral membrane permeabilities in epithelia? Am J Physiol 247:F869–F876

    PubMed  Google Scholar 

  • Chase HS Jr, Al-Awqati Q (1981) Regulation of sodium permeability of the luminal border of the toad bladder by intracellular sodium and calcium. Role of sodium-calcium exchange in the basolateral membrane. J Gen Physiol 77:693–712

    Article  PubMed  Google Scholar 

  • Chase HS Jr, Al-Awqati Q (1983) Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus. J Gen Physiol 81:643–665

    Article  PubMed  Google Scholar 

  • Chernick WS, Barbero GJ (1959) Composition of tracheobronchial secretions in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics 24:739–745

    PubMed  Google Scholar 

  • Christensen O, Bindslev N (1982) Fluctuation analysis of short-circuited current in a warm-blooded sodium-retaining epithelium: site current, density and interaction with triamterene. J Membr Biol 65:19–30

    Article  PubMed  Google Scholar 

  • Citron L, Exley D, Hallpike CS (1956) Formation, circulation and chemical properties of the labyrinthine fluids. Br Med Bull 12:101–104

    PubMed  Google Scholar 

  • Civan MM, Peterson-Yantorno K, O'Brien TG (1988) Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway. Proc Natl Acad Sci USA 85:963–967

    PubMed  Google Scholar 

  • Cook JS, Shaffer C, Cragoe EJ Jr (1987) Inhibition by amiloride analogues of Na+-dependent hexose uptake in LLC-PK1/C14 cells. Am J Physiol 53:C199–C204

    Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281:675–677

    Article  PubMed  Google Scholar 

  • Cox M (1991) Relationship of the aldosterone-induced protein GP 70 to the renal epithelial conductive Na+ channel. In: Bonvalet JP, Farman N, Refestin-Oblin ME (eds) Aldosterone: functional aspects. Libbey Eurotext, Paris, pp 249–257 (Collogue INSERM, vol 215)

    Google Scholar 

  • Cragoe EJ Jr, Woltersdorf OW Jr, Bicking JB, Kwong SF, Jones JH (1967) Pryazine diuretics. II. N-amidino-3-amino-5-substituted-6-halo-pyrazinecarboxamides. J Med Chem 10:66–75

    Article  PubMed  Google Scholar 

  • Cunningham SA, Clements ML, Arrate MP, Frizzell RA, Benos DJ (1990) Cloning and expression of the 55 kDa subunit of the epithelial amiloride-sensitive sodium channel (Abstr). J Cell Biol 111:63a

    Google Scholar 

  • Cuthbert AW (1976) Importance of guanidinium groups for blocking sodium channels in epithelia. Mol Pharmacol 12:945–957

    PubMed  Google Scholar 

  • Cuthbert AW, Brayden DJ, Dunne A, Smyth RL, Wallwork J (1990) Altered sensitivity to amiloride in cystic fibrosis. Observations using cultured sweat glands. Br J Clin Pharmacol 29:227–234

    PubMed  Google Scholar 

  • Das S, Garepapaghi M, Palmer LG (1991) Stimulation by cGMP of apical Na channels in toad urinary bladder. Am J Physiol 260:C234–C241

    PubMed  Google Scholar 

  • Davis PB, Shelhammer JR, Kaliner M (1980) Abnormal adrenergic and cholinergic sensitivity in cystic fibrosis. N Engl J Med 302:1453–1456

    PubMed  Google Scholar 

  • Davis RJ, Czech MP (1985) Amiloride directly inhibits growth factor receptor tyrosine kinase activity. J Biol Chem 260:2543–2551

    PubMed  Google Scholar 

  • Dearborn DB (1976) Water and electrolytes of exocrine secretions. In: Mangos JA, Talamo RC (eds) Cystic fibrosis: projections into the future. Symposia Specialists, New York, pp 179–191

    Google Scholar 

  • Delong J, Civan MM (1984) Apical sodium entry in split frog skin, current-voltage relationship. J Membr Biol 82:25–40

    Article  PubMed  Google Scholar 

  • DeSimone JA, Ferrell F (1985) Analysis of amiloride inhibition of chorda tympani taste response of rat to NaCl. Am J Physiol 249:R52–R61

    PubMed  Google Scholar 

  • DeSimone JA, Heck GL, Mierson S, DeSimone SK (1984) The active ion transport properties of canine lingual epithelia in vitro. Implications for gustatory transduction. J Gen Physiol 83:633–656

    Article  PubMed  Google Scholar 

  • Dhallan RS, Yau K-W, Schrader KA, Reed RR (1990) Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–187

    Article  PubMed  Google Scholar 

  • Di Benedetto G, Lopez-Vidriero MT, Carratu L, Clarke SW (1990) Effect of amiloride on human bronchial ciliary activity in vitro. Respiration 57:37–39

    PubMed  Google Scholar 

  • Drenckhahn D, Schluter K, Allen DP, Bennett V (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230:1287–1289

    PubMed  Google Scholar 

  • Dubinsky WP Jr, Frizzell RA (1983) A novel effect of amiloride on H+-dependent Na+ transport. Am J Physiol 245:C157–C159

    PubMed  Google Scholar 

  • Eaton DC, Hamilton KL (1988) The amiloride-blockable sodium channel of epithelial tissue. In: Narahashi T (ed) Ionic channels, vol 1. Plenum, New York, pp 251–282

    Google Scholar 

  • Edwardson JM, Fanestil DD, Ellory JC, Cuthbert AW (1981) Extraction of a [3H]benzamil binding component from kidney cell membranes. Biochem Pharmacol 30:1185–1189

    Article  PubMed  Google Scholar 

  • Fanestil DD, Porter GA, Edelman IS (1967) Aldosterone stimulation of sodium transport. Biochim Biophys Acta 135:74–88

    Google Scholar 

  • Farquhar MG, Palade GE (1966) Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol 30:359–379

    Article  PubMed  Google Scholar 

  • Fidelman FL, Watlington CO (1984) Insulin and aldosterone interaction on Na+ and K+ transport in cultured kidney cells (A6). Endocrinology 115:1171–1178

    PubMed  Google Scholar 

  • Frings S, Lindemann B (1988) Odorant response of isolated olfactory receptor cells is blocked by amiloride. J Membr Biol 105:233–243

    Article  PubMed  Google Scholar 

  • Frings S, Purves RD, MacKnight ADC (1988) Single channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J Membr Biol 106:157–172

    Article  PubMed  Google Scholar 

  • Frizzell RA (1987) Cystic fibrosis: a disease of ion channels? Trends Neurosci 10:190–193

    Article  Google Scholar 

  • Fuchs W, Hviid Larsen E, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (Lond) 267:137–166

    PubMed  Google Scholar 

  • Galant SP, Norton L, Herbst J, Wood C (1981) Impaired beta adrenergic receptor binding and function in cystic fibrosis neutrophils. J Clin Invest 68:253–258

    PubMed  Google Scholar 

  • Garty H (1986) Mechanisms of aldosterone action in tight epithelia. J Membr Biol 90:193–205

    Article  PubMed  Google Scholar 

  • Garty H, Asher C (1985) Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia. A study using membrane vesicles. J Biol Chem 260:8330–8335

    PubMed  Google Scholar 

  • Garty H, Asher C (1986) Calcium induced down regulation of Na channels in toad bladder epithelium. J Biol Chem 261:7400–7406

    PubMed  Google Scholar 

  • Garty H, Asher C (1991) Does aldosterone induce de novo synthesis of Na+ channels? In: Bonvalet JP, Farman N, Lambda M, Rafectin-Oblin ME (eds) Aldosterone: fundamental aspects. Libbey Eurotext, Paris, pp 273–283 (Colloque INSERM, vol 215)

    Google Scholar 

  • Garty H, Benos DJ (1988) Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev 68:309–373

    PubMed  Google Scholar 

  • Garty H, Edelman S (1983) Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol 81:785–803

    Article  PubMed  Google Scholar 

  • Garty H, Lindemann B (1984) Feedback inhibition of sodium uptake in K+-depolarized toad urinary bladders. Biochim Biophys Acta 771:89–98

    PubMed  Google Scholar 

  • Garty H, Asher C, Yeger O (1987) Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent ions. J Membr Biol 95:151–162

    Article  PubMed  Google Scholar 

  • Garty H, Yeger O, Yanovsky A, Asher C (1989) Guanosine nucleotide dependent activation of the amiloride blockable Na+ channel. Am J Physiol 256:C965–C969

    Google Scholar 

  • Gasc J-M, Lombes M, Oblin M-E, Bonvalet J-P, Farman N (1991) Localization of renal mineralocorticoid and glycocorticoid receptors: an immunohistochemical study. In: Bonvalet JP, Farman N, Lambda M, Rafectin-Obelin ME (eds) Aldosterone: fundamental aspects. Libbey Eurotext, Paris, pp 45–53 (Colloque INSERM, vol 215)

    Google Scholar 

  • George AL Jr, Staub O, Geering K, Rossier BC, Kleyman TR, Kraehenbuhl J-P (1989) Functional expression of the amiloride-sensitive sodium channel in Xenopus oocytes. Proc Natl Acad Sci USA 86:7295–7298

    PubMed  Google Scholar 

  • Gogelein H, Greger R (1986) Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch 406:198–203

    Article  PubMed  Google Scholar 

  • Gowen CW, Lawson EE, Gingras-Leatherman J, Gatzy JT, Boucher RC, Knowles MR (1986) Increased nasal potential difference and amiloride sensitivity in neonates with cystic fibrosis. J Pediatr 108:517–521

    PubMed  Google Scholar 

  • Gray P, Attwell D (1985) Kinetics of light-sensitive channels in vertebrate photoreceptors. Proc R Soc Lond [Biol] 223:379–388

    Google Scholar 

  • Grinstein S, Erlij D (1978) Intracellular calcium and the regulation of sodium transport in the frog skin. Proc R Soc Lond [Biol] 202:353–360

    Google Scholar 

  • Hackney CM, Furness DN, Benos DJ (1992) Localization of putative mechanoelectrical transducer channels in cochlear hair cells by immunoelectron microscopy. Scanning Microsc (in press)

    Google Scholar 

  • Hamilton KL, Eaton DC (1985) Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am J Physiol 249:C200–C207

    PubMed  Google Scholar 

  • Hamilton KL, Eaton DC (1986) Single channel recordings from two types of amiloride-sensitive epithelial Na channels. Membr Biochem 6:149–171

    PubMed  Google Scholar 

  • Handler JS, Preston AS, Orloff J (1969) Effect of adrenal steroid hormones on the response of the toad's urinary bladder to vasopressin. J Clin Invest 48:823–833

    PubMed  Google Scholar 

  • Harris RC, Lufburrow RA III, Cragoe EJ Jr, Seifter JL (1985) Amiloride analogs inhibit Na-glucose and alanine cotransport in renal brush border membrane vesicles (BBMV) (Abstr). Kidney Int 27:310

    Google Scholar 

  • Haynes LW, Yau K-W (1985) Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317:61–64

    Article  PubMed  Google Scholar 

  • Haynes LW, Kay AR, Yau K-W (1986) Single cyclic GMP-activated channel activity in excised patches of rod outer segment membrane. Nature 321:66–70

    PubMed  Google Scholar 

  • Hayes SR, Baum M, Kokko JP (1987) Effects of protein kinase C activation on sodium, potassium chloride, and total CO2 transport in the rabbit cortical collecting tubule. J Clin Invest 80:1561–1570

    PubMed  Google Scholar 

  • Helman SI, Baxendale LM (1990) Blocker-related changes of channel density. Analysis of a three-state model for apical Na channels of frog skin. J Gen Physiol 95:647–678

    Article  PubMed  Google Scholar 

  • Helman SI, Fisher RS (1977) Microelectrode studies of the active sodium transport pathway of frog skin. J Gen Physiol 69:571–604

    Article  PubMed  Google Scholar 

  • Helman SI, Nagel W, Fisher R (1979) Ouabain on active transepithelial sodium transport in frog skin. Studies with microelectrodes. J Gen Physiol 74:105–127

    Article  PubMed  Google Scholar 

  • Helman SI, Cox TC, Van Driessche W (1983) Hormonal control of apical membrane Na transport in epithelia studies with fluctuation analysis. J Gen Physiol 82:201–220

    Article  PubMed  Google Scholar 

  • Helman SI, Baxendale LM, Sariban-Sohraby S, Benos DJ (1986) Blocker-induced noise of Na+ channels in cultured A6 epithelia (Abstr). Fed Proc 45:516

    Google Scholar 

  • Hille B (1984) Ionic channels in excitable membranes. Sinauer, Sunderland

    Google Scholar 

  • Hinton CF, Eaton DC (1989) Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am J Physiol 257:C825–C829

    PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol (Lond) 116:473–496

    PubMed  Google Scholar 

  • Hodgkin AL, McNaughton PA, Nunn BJ (1985) The ionic selectivity and calcium dependence of the light-sensitive pathways in toad rods. J Physiol (Lond) 358:447–468

    PubMed  Google Scholar 

  • Hu P, Oh Y, Jilling T, Benos DJ, Matalon S (1991) Immunofluorescent localization of sodium conductance in culture rat alveolar type II pneumocytes (ATII) (Abstr). Am Rev Respir Dis

    Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2:1–10

    PubMed  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411

    PubMed  Google Scholar 

  • Jan LY, Jan YN (1990) A superfamily of ion channels. Nature 345:672

    Article  PubMed  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron-specific G-protein involved in odorant signal transduction. Science 244:790–795

    PubMed  Google Scholar 

  • Jorgensen FO (1983) Influence of Ca2+ on the mechano-sensitivity of the hair cells in the lateral line organs of Necturus maculosus. Acta Physiol Scand 118:423–431

    PubMed  Google Scholar 

  • Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol (Lond) 403:577–588

    PubMed  Google Scholar 

  • Joris L, Krouse ME, Hagiwara G, Bell CL, Wine JJ (1989) Patch-clamp study of cultured human sweat duct cells: amiloride-blockable Na+ channel. Pflugers Arch 414:369–372

    Article  PubMed  Google Scholar 

  • Kaczorowski GJ, Barros F, Dethmers JK, Trumble MJ, Cragoe EJ Jr (1985) Inhibition of Na+/Ca2+ exchange in pituitary plasma membrane vesicles by analogues of amiloride. Biochemistry 24:1394–1403

    Article  PubMed  Google Scholar 

  • Kaupp UB, Niidome T, Tanabe T, Terada S, Bonigk W, Stuhmer W, Cook NJ, Kangawa K, Matsuo H, Hirose T, Miyata T, Numa S (1989) Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342:762–766

    Article  PubMed  Google Scholar 

  • Kemendy AE, Eaton DC (1990) Aldosterone-induced Na+ transport in A6 epithelia is blocked by 3-deazaadenosine, a methylation blocker (Abstr). FASEB J 4:A445

    Google Scholar 

  • Keynes RD (1969) From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q Rev Biophys 2:177–281

    PubMed  Google Scholar 

  • Kleyman TR, Cragoe EJ Jr (1988) Amiloride and its analogs as tools in the study of ion transport. J Membr Biol 105:1–21

    Article  PubMed  Google Scholar 

  • Kleyman TR, Yulo T, Ashbaugh C, Landry D, Cragoe EJ Jr, Al-Awqati Q (1986) Photoaffinity labeling of the epithelial sodium channel. J Biol Chem 261:2839–2843

    PubMed  Google Scholar 

  • Kleyman TR, Cragoe E, Kraehenbuhl JP (1989) The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoid. J Biol Chem 264:11995–12000

    PubMed  Google Scholar 

  • Kleyman TR, Ernst S, Rossier B, Kraehenbuhl JP (1990) Aldosterone does not alter cell surface expression of the epithelial Na+ channel in A6 cells (Abstr). Kidney Int 37:564A

    Google Scholar 

  • Kleyman TR, Kraehenbuhl J-P, Ernst SA (1991) Characterization and cellular localization of the epithelial Na+ channel. Studies using an anti-Na+ channel antibody raised by an anti-idiotypic route. J Biol Chem 266:3907–3915

    PubMed  Google Scholar 

  • Knowles MR, Gatzy JT, Boucher RC (1981) Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 305(25):1489–1495

    PubMed  Google Scholar 

  • Knowles MR, Gatzy J, Boucher RC (1983a) Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest 71:1410–1417

    PubMed  Google Scholar 

  • Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC (1983b) Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221:1067–1070

    PubMed  Google Scholar 

  • Knowles MR, Stutts MJ, Yankaskas JR, Gatzy JT, Boucher RC (1986) Abnormal respiratory epithelial ion transport in cystic fibrosis. Clin Chest Med 7:285–297

    PubMed  Google Scholar 

  • Knowles MR, Church NL, Waltner WE, Yankaskas JR, Gilligan P, King M, Edwards LJ, Helms RW, Boucher RC (1990) A pilot study of aerosolized amiloride for the treatment of lung diseases in cystic fibrosis. N Engl J Med 22(17):1189–1194

    Google Scholar 

  • Knowlton RG, Cohen-Haguenauer O, Van Cong N, Fre'zal J, Brown VA, Barker D, Bramen JC, Schumm JW, Tsui LC, Buchwald M, Donis-Keller H (1985) A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380–382

    Article  PubMed  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42:298–308

    PubMed  Google Scholar 

  • Kohler D, App E, Schmitz-Schumann M, Wurtemberger G, Mattys H (1986) Inhalation of amiloride improves the mucociliary and the cough clearance in patients with cystic fibrosis. Eur J Respir Dis 69(146):319–326

    Google Scholar 

  • Kroll B, Bautsch W, Bremer S, Wilke M, Tummler B, Fromter E (1989) Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am J Physiol 257:C284–C288

    Google Scholar 

  • L'Allemain G, Franchi A, Cragoe EJ Jr, Pouyssegur J (1984) Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series. J Biol Chem 259:4313–4319

    PubMed  Google Scholar 

  • Lamb TD, Matthews HR, Torre VJ (1985) Rapid and delayed components in the response of salamander retinal rods to reduced external calcium. J Physiol (Lond) 369:34P

    Google Scholar 

  • Leffert HL, Koch KS, Fehlmann M, Heiser W, Lad PJ, Sdelly H (1982) Amiloride blocks cell-free protein synthesis at levels attained inside cultured rat hepatocytes. Biochem Biophys Res Commun 108:738–745

    PubMed  Google Scholar 

  • Lester DS, Asher C, Garty H (1988) Characterization of cAMP-induced activation of epithelial sodium channels. Am J Physiol 254:C802–C808

    PubMed  Google Scholar 

  • Levenson R, Housman D, Cantley L (1980) Amiloride inhibits murine erythroleukemia cell differentiation: evidence for a Ca2+ requirement for commitment. Proc Natl Acad Sci USA 77:5948–5952

    PubMed  Google Scholar 

  • Lewis SA, Alles W (1986) Urinary kallikrein: a physiological regulator of epithelial sodium transport. Proc Natl Acad Sci USA 83:5345–5348

    PubMed  Google Scholar 

  • Lewis SA, de Moura J (1982) Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297:685–688

    Article  PubMed  Google Scholar 

  • Lewis SA, Hanrahan JW (1985) Apical and basolateral membrane ionic channels in rabbit urinary bladder. Pflugers Arch 405:S83–S88

    Article  PubMed  Google Scholar 

  • Lewis SA, Eaton DC, Diamond JM (1976) The mechanism of Na+ transport by the rabbit urinary bladder. J Membr Biol 28:41–70

    Article  PubMed  Google Scholar 

  • Lewis SA, Ifshin M, Loo D, Diamond J (1984) Studies of sodium channels in rabbit urinary bladder by noise analysis. J Membr Biol 80:135–151

    Article  PubMed  Google Scholar 

  • Li, JH-Y, Lindemann BJ (1982) Movement of Na+ and Li+ across the apical membrane of frog skin. In: Emrich HM, Aldenhoff JB, Lux HD (eds) Basic mechanisms in the action of lithium. Excerpta Medica, Amsterdam, pp 23–35

    Google Scholar 

  • Li JH-Y, Lindemann BJ (1983) Competitive blocking of epithelial sodium channels by organic cations: the relationship between macroscopic and microscopic inhibition constants. J Membr Biol 76:235–251

    Article  PubMed  Google Scholar 

  • Li JH-Y, Palmer LG, Edelman IS, Lindemann B (1982) The role of sodium channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J Membr Biol 64:77–89

    Article  PubMed  Google Scholar 

  • Li JH-Y, Cragoe EJ, Lindemann BJ (1985) Structure-activity relationship of amiloride analog as blockers of epithelial Na channels. I. Pyrazine-ring modifications. J Membr Biol 83:45–56

    Article  PubMed  Google Scholar 

  • Light DB, McCann FV, Keller TM, Stanton BA (1988) Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am J Physiol 255:F278–F286

    PubMed  Google Scholar 

  • Light DB, Schwiebert EM, Karlson KH, Stanton BA (1989) Atrial natriuretic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–385

    PubMed  Google Scholar 

  • Light DB, Ausiello DA, Stanton BA (1989) Guanine nucleotide-binding protein. αi-3, directly activates a cation channel in rat renal inner medulary collecting duct cells. J Clin Invest 84:352–356

    PubMed  Google Scholar 

  • Light DB, Corbin JD, Stanton BA (1990) Dual ion-channel regulation by cyclic CMP and cyclic GMP-dependent protein kinase. Nature 344:336–339

    Article  PubMed  Google Scholar 

  • Lindemann B (1980) The beginning of fluctuation analysis of epithelial ion transport. J Membr Biol 54:1–11

    Article  PubMed  Google Scholar 

  • Lindemann B (1984) Fluctuation analysis of sodium channels in epithelia. Annu Rev Physiol 46:497–515

    Article  PubMed  Google Scholar 

  • Lindemann B, Van Driessche W (1977) Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195:292–294

    PubMed  Google Scholar 

  • Lindemann B, Voute C (1976) Structure and function of the epidermis. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 169–210

    Google Scholar 

  • Ling BN, Eaton DC (1989) Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am J Physiol 256:F1094–F1103

    PubMed  Google Scholar 

  • Ling BN, Kemendy AE, Kokko KE, Hinton CF, Marunaka Y, Eaton DC (1990) Regulation of the amiloride-blockable sodium channel from epithelial tissue. Mol Cell Biochem 99:141–150

    Article  PubMed  Google Scholar 

  • Lubin M, Cahn F, Coutermarsh BA (1982) Amiloride, protein synthesis, and activation of quiescent cells. J Cell Physiol 113:247–251

    Article  PubMed  Google Scholar 

  • Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp B (1990) Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett 270:24–29

    Article  PubMed  Google Scholar 

  • Lutz RJ, Litt M, Chakrin LW (1973) Physical-chemical factors in mucus rheology. In: Gabelnick HL, Litt M (eds) Rheology of biological systems. Thomas, Springfield, pp 119–157

    Google Scholar 

  • MacKnight ADC, DiBona DR, Leaf A (1980) Sodium transport across toad urinary bladder: a model “tight” epithelium. Physiol Rev 60:615–715

    PubMed  Google Scholar 

  • MacRobbie EAC, Ussing HH (1961) Osmotic behavior of the epithelial cells of frog skin. Acta Physiol Scand 53:348–365

    PubMed  Google Scholar 

  • Marunaka Y, Eaton DC (1991) Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am J Physiol 260:C1071–C1084

    PubMed  Google Scholar 

  • Matalon S, Bridges RJ, Benos DJ (1991) Amiloride-inhibitable Na+ conductive pathways in alveolar type II pneumocytes. Am J Physiol 260:L90–L96

    PubMed  Google Scholar 

  • Matthews LW, Spector S, Lemm J, Potter J (1963) Studies on pulmonary secretions. I. The overall composition of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am Rev Respir Dis 88:199–204

    PubMed  Google Scholar 

  • Mentz WM, Brown JB, Friedman M, Stutts MJ, Gatzy JT, Boucher RC (1986) Deposition, clearance, and effects of aerosolized amiloride in sheep airways (Abstr). Am Rev Respir Dis 134:938–943

    PubMed  Google Scholar 

  • Mills JW, Ernst SA (1975) Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta 375:268–273

    PubMed  Google Scholar 

  • Mohrmann M, Cantiello HF, Ausiello DA (1987) Inhibition of epithelial Na+ transport by atriopeptin, protein kinase C, and pertussin toxin. Am J Physiol 253:F372–F376

    PubMed  Google Scholar 

  • Molday L, Cook NJ, Kaupp UB, Molday RS (1990) The cGMP-gated cation channel of bovine rod photoreceptor cells is associated with a 240-kDa protein exhibiting immunochemical cross-reactivity with spectrin. J Biol Chem 265:18690–18695

    PubMed  Google Scholar 

  • Moran A, Moran N (1984) Amiloride-sensitive channels in LLC-PK1 apical membranes (Abstr). Fed Proc 43:44a

    Google Scholar 

  • Moran A, Asher C, Cragoe EJ Jr, Garty H (1980) Conductive sodium pathway with low affinity to amiloride in LLC-PK1 cells and other epithelia. J Biol Chem 263:19586–19591

    Google Scholar 

  • Morrow JS, Cianci CD, Ardito T, Mann AS, Kashgarian M (1989) Ankyrin links fodrin to the alpha subunit of Na+,K+ ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J Cell Biol 108:455–465

    Article  PubMed  Google Scholar 

  • Mullen TL, Biber TUL (1978) Sodium uptake across the outer surface of the frog skin. In: Hoffman JF (ed) Membrane transport processes. vol 1. Raven, New York, pp 199–212

    Google Scholar 

  • Nagel W (1976) The intracellular electrical potential profile of the frog skin epithelium. Pflugers Arch 365:135–143

    Article  PubMed  Google Scholar 

  • Nagel W, Garcia-Diaz JF, Armstrong WM (1981) Intracellular ionic activities in frog skin. J Membr Biol 61:127–134

    Article  PubMed  Google Scholar 

  • Nakamura T, Gold G (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–444

    Article  PubMed  Google Scholar 

  • Nelson WJ, Veshnock PJ (1987) Ankyrin binding to (Na+ + K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328:533–536

    Article  PubMed  Google Scholar 

  • Newhouse MT, Rossman CM, Dolovich J, Dolovich MB, Wilson WM (1976) Impairment of mucociliary transport in cystic fibrosis. Mod Probl Pediatr 19:190–198

    Google Scholar 

  • Nicol GD, Schnetkamp PPM, Saimi Y, Cragoe EJ Jr, Bownds MD (1987) A derivative of amiloride blocks both the light-regulated and cyclic GMP-regulated conductances in rod photoreceptors. J Gen Physiol 90:651–669

    Article  PubMed  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi T, Nakayama H, Kanaoka Y, Minamino A, Kangawa K, Matsuo H, Rafferty MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    PubMed  Google Scholar 

  • Oh Y, Benos DJ (1992) Amiloride-sensitive sodium channels. In: Kleyman TR, Cragoe E, Simchowitz L (eds) Amiloride and its analogs: unique transport inhibitors. VCH, New York (in press)

    Google Scholar 

  • Oh Y, Hu P, Kleyman TR, Saccomani G, Matalon S, Benos DJ (1991) Evidence for the presence of an amiloride binding protein in adult alveolar type II (ATII) pneumocytes (Abstr). FASEB J 5:A690

    Google Scholar 

  • Ohara A, Matsumoto P, Eaton DC, Marunaka Y (1991) A non-selective cation channel induced by cyclic GMP and nitroprusside in a distal nephron cell line (A6) (Abstr). FASEB J 5(4):A689

    Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (Lond) 359:189–217

    PubMed  Google Scholar 

  • Ohmori H (1988) Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J Physiol 399:115–137

    PubMed  Google Scholar 

  • Olans L, Sariban-Sohraby S, Benos D (1984) Saturation behavior of single amiloride sensitive sodium channels in planar lipid bilayers. Biophys J 46:831–835

    PubMed  Google Scholar 

  • Omachi RS, Robbie DE, Handler JS, Orloff J (1974) Effects of ADH and other agents on cyclic AMP accumulation in the toad bladder epithelium. Am J Physiol 226:1152–1157

    PubMed  Google Scholar 

  • Oppenheimer EHJ, Rosenstein BJ (1979) Differential pathology of nasal polyps in cystic fibrosis and atopy. Lab Invest 40:445–449

    PubMed  Google Scholar 

  • Orlando RC, Powell DW, Croom RD, Berschneider HM, Boucher RC, Knowles MR (1989) Colonic and esophageal transepithelial potential difference in cystic fibrosis. Gastroenterology 96:1041–1048

    PubMed  Google Scholar 

  • Orloff J, Handler JS (1967) The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone. Am J Med 42:757–768

    Article  PubMed  Google Scholar 

  • Pace U, Hanski E, Salomon Y, Lancet D (1985) Odorant-sensitive adenylatecyclase may mediate olfactory reception. Nature 316:255–258

    Article  PubMed  Google Scholar 

  • Palmer LG (1982a) Na+ transport and flux ratio through apical Na+ channels in toad bladder. Nature 297:688–690

    Article  PubMed  Google Scholar 

  • Palmer LG (1982b) Ion selectivity of the apical membrane Na channels in the toad urinary bladder. J Membr Biol 67:91–98

    Article  PubMed  Google Scholar 

  • Palmer LG (1984) Voltage-dependent block by amiloride and other monovalent cations of apical sodium channels in the toad urinary bladder. J Membr Biol 80:153–165

    Article  PubMed  Google Scholar 

  • Palmer LG (1985a) Interactions of amiloride and other blocking cations with the apical sodium channel in the toad urinary bladder. J Membr Biol 87:191–199

    Article  PubMed  Google Scholar 

  • Palmer LG (1985b) Modulation of apical sodium permeability of the toad urinary bladder by intracellular Na+, Ca2+, and H+. J Membr Biol 83:57–69

    Article  PubMed  Google Scholar 

  • Palmer LG (1991) The epithelial Na+ Channel: Inferences about the nature of the conducting pore. Comm Mol Cell Biophys 7:259–283

    Google Scholar 

  • Palmer LG, Andersen OS (1989) Interactions of amiloride and small monovalent cations with the epithelial sodium channel. Inferences about the nature of the channel pore. Biophys J 55(4):779–787

    PubMed  Google Scholar 

  • Palmer LG, Edelman IS (1981) Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann NY Acad Sci 372:1–14

    Google Scholar 

  • Palmer LG, Frindt G (1986) Amiloride sensitive Na channels from the apical membrane of the rat cortical collecting tubules. Proc Natl Acad Sci USA 83:2767–2770

    PubMed  Google Scholar 

  • Palmer LG, Frindt G (1987a) Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am J Physiol 253:F333–F339

    PubMed  Google Scholar 

  • Palmer LG, Frindt G (1987b) Ca ionophore and phorbol ester inhibit Na channels in rat cortical collecting tubules (Abstr). Fed Proc 46:495

    Google Scholar 

  • Palmer LG, Edelman IS, Lindemann B (1980) Current-voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J Membr Biol 57:59–71

    Article  PubMed  Google Scholar 

  • Palmer LG, Li JH, Lindemann B, Edelman IS (1982) Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol 64:91–102

    Article  PubMed  Google Scholar 

  • Palmer LG, Corthesy-Theulaz I, Gaeggeler H-P, Kraehenbuhl J-P, Rossier B (1990) Expression of epithelial Na channels in Xenopus oocytes. J Gen Physiol 96:23–46

    Article  PubMed  Google Scholar 

  • Palvesky P, Blazer-Yost B, Cox M, Szerlip H (1990) Aldosterone induces a subunit of the epithelial Na+ channel (Abstr). Kidney Int 37:233A

    Google Scholar 

  • Park CS, Fanestil DD (1980) Covalent modification and inhibition of an epithelial sodium channel by tyrosine-reactive reagent. Am J Physiol 239:F299–F306

    PubMed  Google Scholar 

  • Pearce LB, Calhoon RD, Burns PR, Vincent A, Goldin SM (1988) Two functionally distinct forms of guanosine cyclic 3′,5′-phosphate stimulated cation channels in a bovine rod photoreceptor disk preparation. Biochemistry 27:4396–4406

    Article  PubMed  Google Scholar 

  • Potter JL, Matthews LW, Spector S, Lemm J (1967) Studies on pulmonary secretions. II. Osmolality and the ionic environment of pulmonary secretions from patients with cystic fibrosis, bronchiectasis, and laryngectomy. Am Rev Respir Dis 96:83–87

    PubMed  Google Scholar 

  • Pratt AG, Ausiello DA, Cantiello HF (1991) Actin filament organization controls Na+ channel activity in A6 epithelial cells (Abstr). FASEB J 5:A690

    Google Scholar 

  • Quinton PM (1986) Missing Cl conductance in cystic fibrosis. Am J Physiol 221:C649–C652

    Google Scholar 

  • Reasor MJ, Cohen D, Proctor DF, Rubin RJ (1978) Tracheobronchial secretions collected from intact dogs. II. Effects of cholinomimetic stimulation. J Appl Physiol 45:190–194

    PubMed  Google Scholar 

  • Rehm H, Tempel BL (1991) Voltage-gated K+ channels of the mammalian brain. FASEB J 5:164–170

    PubMed  Google Scholar 

  • Rick R, Dorge A, Van Arnim E, Thurau K (1978) Electron microprobe analysis of frog skin epithelium: evidence for a syncytial Na+ transport compartment. J Membr Biol 39:257–271

    Article  PubMed  Google Scholar 

  • Riorden JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Lok S, Plavsic N, Chou JL, Drumm ML, Ianuzzi MC, Collins FS, Tsui LC (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    PubMed  Google Scholar 

  • Robinson DH, Bubien JK, Smith PR, Benos DJ (1991) Epithelial sodium conductance in rabbit preimplantation trophectodermal cells. Dev Biol 147:313–321

    Article  PubMed  Google Scholar 

  • Rommens JM, Ianuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui LC, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    PubMed  Google Scholar 

  • Rossier BC, Verrey F, Kraehenbuhl J-P (1989) Transepithelial sodium transport and its control by aldosterone: a molecular approach. In: Schultz S (ed) Current topics in membranes and transport, vol 34. Academic, San Diego, pp 167–183

    Google Scholar 

  • Sahib MK, Schwartz JH, Handler JS (1978) Inhibition of toad urinary bladder sodium transport by carbamylcholine: possible role for cGMP. Am J Physiol 250:F586–F591

    Google Scholar 

  • Sand O (1975) Effects of different ionic environments on the mechanosensitivity of lateralline organs in the mudpuppy. J Comp Physiol 102:27–42

    Article  Google Scholar 

  • Sariban-Sohraby S, Benos D (1986a) The amiloride-sensitive sodium channel. Am J Physiol 250:C175–C190

    PubMed  Google Scholar 

  • Sariban-Sohraby S, Benos DJ (1986b) Detergent solubilization, functional reconstitution, and partial purification of epithelial amiloride-binding protein. Biochemistry 25:4639–4646

    Article  PubMed  Google Scholar 

  • Sariban-Sohraby S, Fisher RS (1990) Single channel activity by the amiloride binding subunit of the epithelial Na+ channel (Abstr). Biophys J 57:87a

    Google Scholar 

  • Sariban-Sohraby S, Burg M, Wiesmann WP, Chiang PK, Johnson JP (1984a) Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225:745–746

    PubMed  Google Scholar 

  • Sariban-Sohraby S, Latorre R, Burg M, Olans L, Benos D (1984b) Amiloride-sensitive epithelial Na+ channels reconstituted in planar lipid bilayer membranes. Nature 308:80–82

    Article  PubMed  Google Scholar 

  • Sariban-Sohraby S, Sorscher EJ, Brenner BM, Benos DJ (1988) Phosphorylation of a single subunit of the epithelial Na+ channel protein following vasopressin treatment of A6 cells. J Biol Chem 263:13875–13879

    PubMed  Google Scholar 

  • Schultz SG (1981) Homocellular regulatory mechanisms in sodium transporting epithelia: avoidance of extinction by “flush-through”. Am J Physiol 241:F579–F590

    PubMed  Google Scholar 

  • Sharp GWG, Leaf A (1966) Mechanism of action of aldosterone. Physiol Rev 46:593–633

    PubMed  Google Scholar 

  • Simon SA, Garvin JL (1985) Salt and acid studies on canine lingual epithelium. Am J Physiol 249:C398–C408

    PubMed  Google Scholar 

  • Simon SA, Holland VF, Benos DJ, Zampigh GA (1992) Transcellular and paracellular pathways in lingual epithelia and their influence in taste transduction. J Electron Microsc Methods (in press)

    Google Scholar 

  • Sklar PB, Anholt RRH, Snyder SH (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells: differential stimulation by distinct classes of odorants. J Biol Chem 261:15538–15543

    PubMed  Google Scholar 

  • Smith PR, Benos DJ (1991) Epithelial Na+ channels. Annu Rev Physiol 53:509–530

    PubMed  Google Scholar 

  • Smith PR, Saccomani G, Joe E-H, Angelides KJ, Benos DJ (1991) Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal A6 epithelial cells. Proc Natl Acad Sci USA 88:6971–6975

    PubMed  Google Scholar 

  • Smith RL, Cochran DW, Gund P, Cragoe EJ Jr (1979) Proton, carbon-13, and nitrogen-15 nuclear magnetic resonance and CNDO/2 studies on the tautomerism and configuration of amiloride, a novel acylguanidine. J Am Chem Soc 101:191–201

    Article  Google Scholar 

  • Snart RS, Dalton T (1973) Response of toad bladder to prolactin. Comp Biochem Physiol [A] 45:307–311

    Article  Google Scholar 

  • Soltoff SP, Mandel LJ (1983) Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science 220:957–958

    PubMed  Google Scholar 

  • Sorscher EJ, Accavitti MA, Keeton D, Steadman E, Frizzell RA, Benos DJ (1988) Antibodies against purified epithelial sodium channel protein from bovine renal papilla. Am J Physiol 24:C835–C843

    Google Scholar 

  • Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–180

    Article  PubMed  Google Scholar 

  • Staub O, Verrey F, Rossier BC, Kraehenbuhl J-P (1990) Gene expression of a kidney apical protein (AP) in Xenopus laevis oocyte and during early development (Abstr). J Cell Biol 111:310a

    Google Scholar 

  • Stern RC, Boat TF, Doershuk CF, Tucker AS, Primiano FP, Matthews LW (1976) Course of cystic fibrosis in 95 patients. J Pediatr 89:406–411

    PubMed  Google Scholar 

  • Stirling CE (1972) Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol 53:704–714

    Article  PubMed  Google Scholar 

  • Stutts MJ, Knowles MR, Gatzy JT, Boucher RC (1986) Oxygen consumption and ouabain binding sites in cystic fibrosis nasal epithelium. Pediatr Res 20(12):1316–1320

    PubMed  Google Scholar 

  • Szerlip H, Cox M (1989) Aldosterone induced glycoproteins: further characterization. J Steroid Biochem 32:815–822

    Article  PubMed  Google Scholar 

  • Szerlip H, Weisberg L, Clayman M, Neilson E, Wade J, Cox M (1989) Aldosterone induced proteins: purification and localization of GP65,70. Am J Physiol 256:C865–C872

    PubMed  Google Scholar 

  • Takagi SF, Kitamura H, Imai K, Takeuchi H (1969) Further studies on the roles of sodium and potassium in the generation of the electro-olfactogram. Effects of mono-, di-and trivalent cations. J Gen Physiol 53:115–130

    Article  PubMed  Google Scholar 

  • Tang C-M, Preser F, Morad M (1988) Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215

    PubMed  Google Scholar 

  • Taylor A, Windhager EE (1979) Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am J Physiol 236:F505–F512

    PubMed  Google Scholar 

  • Thompson SM, Suzuki Y, Schultz SG (1982) The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations of the Na-entry mechanism. J Membr Biol 66:41–54

    Article  PubMed  Google Scholar 

  • Tousson A, Alley C, Sorscher E, Brinkley B, Benos D (1989) Immunocytochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci 93:349–362

    PubMed  Google Scholar 

  • Turnheim KR (1991) Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev 71:429–445

    PubMed  Google Scholar 

  • Turnheim KR, Frizzell RA, Schultz SC (1978) Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J Membr Biol 39:233–256

    Article  PubMed  Google Scholar 

  • Ussing HH (1965) Relationship between osmotic reactions and active sodium transport in the frog skin epithelium. Acta Physiol Scand 63:141–155

    PubMed  Google Scholar 

  • Ussing HH, Windhager EE (1964) Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol Scand 61:484–504

    PubMed  Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in short-circuited isolated frog skin. Acta Physiol Scand 23:110–127

    PubMed  Google Scholar 

  • Van Driessche W, Erlij D (1983) Noise analysis of inward and outward Na+ currents across the apical barrier of ouabain-treated frog skin. Pflugers Arch 398:179–188

    Article  PubMed  Google Scholar 

  • Van Driessche W, Lindemann B (1979) Concentration-dependence of currents through single sodium-selective pores in frog skin. Nature 282:519–520

    Article  PubMed  Google Scholar 

  • Verrier B, Champigny G, Barbry P, Gerard C, Mauchamp J, Lazdunski M (1989) Identification and properties of a novel type of Na+-permeable amiloridesensitive channel in thyroid cells. Eur J Biochem 183:499–505

    Article  PubMed  Google Scholar 

  • Vigne P, Champigny G, Marsault R, Barbry P, Frelin C, Lazdunski M (1989) A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J Biol Chem 264:7663–7668

    PubMed  Google Scholar 

  • Wainwright BJ, Scambler PJ, Schmidke J, Watson EA, Law HY, Farral M, Cooke HJ, Eiberg H, Williamson R (1985) Localization of cystic fibrosis locus to human chromosome 7 cen-q22. Nature 318:384–388

    Article  PubMed  Google Scholar 

  • Wanner A (1976) Clinical aspects of mucociliary transport. Am Rev Respir Dis 113:833–878

    PubMed  Google Scholar 

  • Warncke J, Lindemann B (1985) Voltage dependence of Na+ channel blockade by amiloride: relaxation effect in admittance spectra. J Membr Biol 86:255–265

    Article  PubMed  Google Scholar 

  • White R, Woodward S, Leppert M, O'Connell P, Hoff M, Herbst J, Lalouel JM, Dean M, Vande Woude G (1985) A closely linked genetic marker for cystic fibrosis. Nature 318:382–384

    Article  PubMed  Google Scholar 

  • Widdecombe JH, Welsh MJ, Finkbeiner WE (1985) Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc Natl Acad Sci USA 82:6167–6171

    PubMed  Google Scholar 

  • Wills NK, Millinoff LP, Crowe WE (1991) Na+ channel activity in cultured renal (A6) epithelium: regulation by solution osmolarity. J Membr Biol 1221:79–90

    Google Scholar 

  • Wood RE, Boat TF, Doershuk CF (1976) State of the art: cystic fibrosis. Am Rev Respir Dis 113:833–878

    PubMed  Google Scholar 

  • Woodhull AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61:687–708

    Article  PubMed  Google Scholar 

  • Wright SH, Wunz TM (1989) Amiloride transport in rabbit renal brush-border membrane vesicles. Am J Physiol 256:F462–F468

    PubMed  Google Scholar 

  • Yamaguchi DT, Sakai R, Bahn L, Cragoe EJ Jr, Jordan SC (1986) Amiloride inhibition of DNA synthesis and immunoglobulin production by activated human peripheral blood mononuclear cells is independent of sodium/hydrogen antiport. J Immunol 137:1300–1304

    PubMed  Google Scholar 

  • Yanase M, Handler JS (1986) Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol 250:C517–C522

    PubMed  Google Scholar 

  • Yau K-W, Haynes LW (1986) Effect of divalent cations on the macroscopic cGMP-activated current in excised rod membrane patches (Abstr). Biophys J 49:33a

    Google Scholar 

  • Yau K-W, Nakatani K (1984) Cation selectivity of light-sensitive conductance in retinal rods. Nature 309:352–354

    Article  PubMed  Google Scholar 

  • Yorio T, Bentley PJ (1978) Phospholipase A and the mechanisms of action of aldosterone. Nature 271:79–81

    Article  PubMed  Google Scholar 

  • Zamofing D, Rossier BC, Geering K (1989) Inhibition of N-glycosylation affects transepithelial Na+ but not Na+-K+-ATPase transport. Am J Physiol 256:C958–C996

    PubMed  Google Scholar 

  • Zeiske W, van Driessche W (1984) The sensitivity of apical Na+ permeability in frog skin to hypertonic stress. Pflugers Arch 400:130–139

    Article  PubMed  Google Scholar 

  • Zweifach A, Lewis S (1988) Characterization of a partially degraded sodium channel from urinary tract epithelium. J Membr Biol 101:49–56

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Benos, D.J., Cunningham, S., Randall Baker, R., Beth Beason, K., Oh, Y., Smith, P.R. (1992). Molecular characteristics of amiloride-sensitive sodium channels. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 120. Reviews of Physiology, Biochemistry and Pharmacology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036122

Download citation

  • DOI: https://doi.org/10.1007/BFb0036122

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55364-9

  • Online ISBN: 978-3-540-47039-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics