Skip to main content

Artificial impedance approach of the trajectory generation and collision avoidance for single and dual arm robots

  • Control In The Task Space
  • Conference paper
  • First Online:
Advanced Robot Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 162))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Khatib, O., Commande dynamique dans l'espace opérationnel des robots manipulateurs en présence d'obstacles, Thèse docteur ingénieur, ENSAE, Toulouse, 1980.

    Google Scholar 

  2. Takegaki, M., Arimoto, S., A New Feedback Method for Dynamic Control of Manipulators, Journal of Dynamic Systems, Measurement and Control, Vol. 102, June 1981, pp. 119–125.

    Google Scholar 

  3. Hogan, N., Impedance Control: An Approach to Manipulation, Journal of Dynamic Systems, Measurement and Control, Vol. 107, March 1985, pp. 1–24.

    Google Scholar 

  4. Hogan, N., Stable Execution of Contact Tasks Using Impedance Control, The Proceedings of the IEEE International Conference on Robotics and Automation, 1987, pp. 1047–1054.

    Google Scholar 

  5. Necsulescu, D.S., Jassemi-Zargani, J., Graham, W.B., Impedance Control for Robotic Manipulation, The Proceedings of the Second Workshop on Military Robotics Applications, Royal Military College, Kingston, Ont., Aug. 1989.

    Google Scholar 

  6. Craig, J.J., Introduction to Robotics, Addison-Wesley, 1986.

    Google Scholar 

  7. Necsulescu, D.S., Jassemi-Zargani, R., and Graham, W.B., The Methods of Artificial Potential Field and Impedance Control in Robotics, CASI Symposium on Space Station, Ottawa, Canada, 8–9 Nov., 1989.

    Google Scholar 

  8. Luh, J.Y.S., Walker, M.W., and Paul, R.P.C., Resolved Acceleration of Mechanical Manipulators, IEEE Trans. of AC, No. 3, 1980, pp. 236–241.

    Google Scholar 

  9. Khatib, O., A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation, IEEE Journal of Robotics and Automation, No. 1, 1987, pp. 43–53.

    Google Scholar 

  10. Freund, E., Fast Nonlinear Control with Arbitrary Pole R Placement for Industrial Robots and Manipulators, The Int. Journal of Robotics, No. 1, 1982, pp. 67–78.

    Google Scholar 

  11. Luh, J.Y. and Zheng, Y.F., Constrained Relations Between Two Coordinated Industrial Robots for Motion Control, Int. Journal of Robotics Research, 1987, No. 3, pp. 60–70.

    Google Scholar 

  12. Kazerooni, H. and Tsai, T.I., Compliance Control and Unstructured Modelling of Cooperating Robots, IEEE Int. Conf. on Robotics and Automation, 1988, pp. 510–515.

    Google Scholar 

  13. Uchiyama, M. and Dauchez, P., A Symmetric Hybrid Position/Force Control Scheme for the Coordination of Two Robots, IEEE Int. Conf. on Robotics and Automation, 1988, pp. 350–356.

    Google Scholar 

  14. Kopf, C.D. and Yabuta, T., Experimental Comparison of Master/Slave and Hybrid Two Arm Position/Force Control, IEEE Int. Conf. on Robotics and Automation, 1988, pp. 1633–1637.

    Google Scholar 

  15. Necsulescu, D.S., Jassemi-Zargani, R. and Graham, W.B., Trajectory Generation for Dual-Arm Robots Using Artificial Impedance Approach, Can. Conf. on El. and Comp. Eng., Ottawa, Sept. 3–6, 1990, pp. 50.1.1–50.1.4.

    Google Scholar 

  16. Wolovich, W.A., Robotics: Basic Analysis and Design, Holt, Rinehart and Winston, 1987.

    Google Scholar 

  17. An, C.H., Atkeson, G.G., Griffiths, J.D., and Hollerbach, J.M., Experimental Evaluation of Feedforward and Computed Torque Control, IEEE Trans. on Robotics and Automation, 1989, No. 3, pp. 368–373.

    Google Scholar 

  18. Spong, M., and Vidyasagar, M., Robust Linear Compensator Design for Nonlinear Robotic Control, IEEE Journal on Robotics and Automation, No. 4, 1987, pp. 345–351.

    Google Scholar 

  19. Tomizuka, M.R., Horowitz, R. and Landau, Y.D., On the Use of Model Reference Adaptive Control Techniques for Mechanical Manipulators, 2nd IASTED Symp. on Identification, Control and Robotics, Davos, March 1982.

    Google Scholar 

  20. Nicosia, S. and Tomei, P., Model Reference Adaptive Control Algorithms for Industrial Robots, Automatica, No. 5, 1984, pp. 635–644.

    Google Scholar 

  21. Craig, J.J., Adaptive Control of Mechanical Manipulators, Addison-Wesley, 1988.

    Google Scholar 

  22. Asada, H., and Slotine, J.J.E., Robot Analysis and Control, J. Wiley, 1985.

    Google Scholar 

  23. Nakao, M., Ohnishi, K. and Miyachi, K., A Robust Decentralized Joint Control Based on Interference Estimation, IEEE Conf. on Robotics and Automation, 1987, pp. 376–331.

    Google Scholar 

  24. Komada, S. and Ohnishi, K., Force Feedback Control of Robot Manipulator by the Acceleration Tracing Orientation Method, IEEE Trans. on Industrial Electronics, No. 1, 1990, pp. 6–12.

    Google Scholar 

  25. Flashner, H., and Skowronski, J.M., Model Tracking Control of Hamiltonian Systems, J. Dyn. Syst., Measurement and Control, Dec. 1989, pp. 656–660.

    Google Scholar 

  26. Spong, M., Vidyasagar, M. Robot Dynamics and Control, J.W., 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Carlos Canudas de Wit

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Necsulescu, D.S. (1991). Artificial impedance approach of the trajectory generation and collision avoidance for single and dual arm robots. In: Canudas de Wit, C. (eds) Advanced Robot Control. Lecture Notes in Control and Information Sciences, vol 162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0039271

Download citation

  • DOI: https://doi.org/10.1007/BFb0039271

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54169-1

  • Online ISBN: 978-3-540-47479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics