Skip to main content

Long line attractors

  • Conference paper
  • First Online:
Iteration Theory and its Functional Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1163))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Introduction. These Proceedings.

    Google Scholar 

  2. Targonski, Gy.: "Topics in Iteration Theory", Göttingen, Vandenhoek and Ruprecht 1981.

    MATH  Google Scholar 

  3. Sharkovsky, A.N.: Co-existence of cycles of a continuous map of a line into itself. Ukr. Math. Z. 16, 61–71 (1964).

    Google Scholar 

  4. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  5. Rössler, O.E.: Syncope implies chaos in walking-stick maps. Z. Naturforsch. 32a, 607–613 (1977).

    MathSciNet  Google Scholar 

  6. Grossmann, S., and Thomae, S.: Invariant distribution and stationary correlation functions of one-dimensional discrete processes. Z. Naturforsch. 32a, 1353–1363 (1977).

    MathSciNet  Google Scholar 

  7. Lorenz, E.N.: Noisy periodicity and reverse bifurcation. Ann. N.Y. Acad. Sci. 357, 282–291 (1980).

    Article  MATH  Google Scholar 

  8. Misiurewicz, M.: Absolutely continuous measures for certain types of maps of an interval. Publ. Math. I.H.E.S. 53, 17–51 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  9. Daido, H.: Universal relation of a band-splitting sequence to a preceding period-doubling one. Phys. Lett. 86 A, 259–262 (1981).

    Article  MathSciNet  Google Scholar 

  10. Li, T.Y., and Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  11. Thom, R.: "Stabilité Structurelle et Morphogénèse. New York. Benjamin 1972.

    MATH  Google Scholar 

  12. Hopf, E.: "Ergodentheorie". Berlin. Springer-Verlag 1937, p.42.

    Book  MATH  Google Scholar 

  13. Kaplan, J.L., and Yorke, J.A.: Chaotic behaviour of multidimensional difference equations. Springer Lect. Notes Math. 730, 228–237 (1979).

    Article  MathSciNet  Google Scholar 

  14. Rössler, O.E.: Chaos and bijections across dimensions. In "New Approaches to Nonlinear Problems in Dynamics". (P.J. Holmes, ed.), 477–486, Philadelphia, SIAM 1980.

    Google Scholar 

  15. Aizawa, Y., and Murakami, C.: Generalization of baker's transformation — chaos and stochastic process on a Smale horseshoe. Progr. Theor. Phys. 69, 1416–1426 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  16. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  17. Smale, S.: Dynamical systems and turbulence. Springer Lect. Notes Math. 615, 48–70 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  18. Rössler, O.E.: Example of an Axiom-A O.D.E. In "Chaos, Fractals and Dynamics". (P. Fischer and W.R. Smith, eds.), 105–114. New York. Marcel Dekker 1985.

    Google Scholar 

  19. Plykin, R.V.: Sources and sinks of A-diffeomorphisms of surfaces. Math. USSR Sbornik 23, 233–253 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  20. Rössler, O.E.: Chaos and strange attractors in chemical kinetics. In "Synergetics far from Equilibrium". (A. Pacault and C. Vidal, eds.), 107–113. Berlin-New York. Springer-Verlag 1979.

    Google Scholar 

  21. Hudson, J.L., and Rössler, O.E.: A piecewise-linear invertible noodle map. Physica 11 D, 239–242 (1984).

    MathSciNet  MATH  Google Scholar 

  22. Sinai, Ja.: On the concept of entropy for a dynamical system (in Russian). Dokl. Akad. Nauk SSSR 124, 768–771 (1959).

    MathSciNet  MATH  Google Scholar 

  23. Anosov, D.V.: Roughness of geodesic flows on compact Riemannian surfaces of negative curvature. Soviet Math. Dokl. 3, 1068–1070 (1962).

    MATH  Google Scholar 

  24. Williams, R.F.: The ‘DA’ maps of Smale and structural stability. In "Global Analysis". (S.S. Chern and S. Smale, eds.), Proc. Symp. Pure Math. (AMS) 14, 329–334 (1970).

    Article  MathSciNet  Google Scholar 

  25. Nusse, H.E.: "Chaos, yet No Chance to Get Lost". Utrecht. Elinkwijk 1983.

    MATH  Google Scholar 

  26. Williams, R.F.: One-dimensional nonwandering sets. Topology 6, 473–487 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  27. Alexandroff, P.S., and Urysohn, P.: Mémoire sur les surfaces topologiques compacts. Verh. Konink. Acad. Wetensch. Amsterdam 14, 1–96 (1929).

    MATH  Google Scholar 

  28. Steen, L.A., and Seebach, J.A.: "Counterexamples in Topology", 2nd edn. New York. Springer-Verlag 1978, p.71.

    Book  MATH  Google Scholar 

  29. Anaxagoras of Clazomenae: "Physis". Fragment 12. (∼ 462 B.C.) Reprinted and translated in: G.S.Kirk and J.E.Raven, "The Presocratic Philosophers, A Critical History with a Selection of Texts". Cambridge. Cambridge University Press, 372–373 (1957).

    Google Scholar 

  30. Rössler, O.E.: The chaotic hierarchy. Z. Naturforsch. 38a, 788–801 (1983).

    MathSciNet  MATH  Google Scholar 

  31. Christie, A.: "Chinese Mythology". London. Paul Hamlyn, p.44 (1968).

    Google Scholar 

  32. "Nova — Adventures in Science". New York. Addison-Wesley, p. 27 (1982).

    Google Scholar 

  33. Note the arrow-like quality of this dual second principle again.

    Google Scholar 

  34. Munkres, J.R.: "Topology — A First Course". Englewood Cliffs, N.J. Prentice-Hall 1975.

    MATH  Google Scholar 

  35. Note that this is how Smale [16] originally introduced his Axiom-A attractor: as the intersection of all (n > 0) iterates of its domain of attraction, yielding a compact invariant set Λ. (He then went on to characterize the object further as being locally the product of a Cantor set and a one-dimensional arc, in the simplest case [17]. In the present terminology, this would amount to postulating the existence of a "compact long line", provided such were possible).

    Google Scholar 

  36. Mandelbrot, B.: "The Fractal Geometry of Nature" San Francisco. Freeman 1982.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Liedl Ludwig Reich György Targonski

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Rössler, O.E. (1985). Long line attractors. In: Liedl, R., Reich, L., Targonski, G. (eds) Iteration Theory and its Functional Equations. Lecture Notes in Mathematics, vol 1163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0076428

Download citation

  • DOI: https://doi.org/10.1007/BFb0076428

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16067-0

  • Online ISBN: 978-3-540-39749-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics