Skip to main content

In search of a complete invariant for graphs

  • Special Invited Addresses
  • Conference paper
  • First Online:
Combinatorics and Graph Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 885))

Abstract

Let A be the adjacency matrix of an ordinary (simple) graph G and A′=xI+λA+(J-A-I) where I is the n×n identity matrix and J is the n×n matrix of l’s. Then we call P(x,λ)=Per(A′) the permanent polynomial of G. A frame (2-matching) of a graph G is a spanning subgraph F of G whose components are single points, single lines, paths or cycles. If F has wi paths Pi, i=1,…,n and yj cycles Cj we let \(w(F) = \mathop \Pi \limits_{i = 1}^n p_i ^{w_i } \mathop \Pi \limits_{j = 3}^n c_j ^{y_j }\) the weight of F and call \(F(p,c) = \mathop \sum \limits_{F\varepsilon \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{F} } } w(F)\), where \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{F} }\) is the family of all frames of G, the frame polynomial of G. We conjecture that either of these is a complete invariant for graphs, show their interrelation and present some evidence why the conjectures are plausible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Berge, Graphs and Hypergraphs, Second Edition, North Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  2. E.J. Farrell, On a general class of graph polynomials, J. Comb. Theory, B, 26 (1979), 111–122.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Harary, Graph Theory, Addison-Wesley, 1969.

    Google Scholar 

  4. H. Minc, Permanents, Addison-Wesley, 1978.

    Google Scholar 

  5. R.C. Read, Teaching graph theory to a computer, in Recent progress in combinatorics (W.T. Tutte Ed.), Academic Press, 1969, 161–174.

    Google Scholar 

  6. H.J. Ryser, Combinatorical Mathematics, Carus Monographs No. 14, 1963.

    Google Scholar 

  7. Y. Shah, G.I. Davida and M.K. McCarthy, Optimum features and graph isomorphism, IEEE Transactions Sys. Man and Gyb, SMC 4 (1974), 313–319.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Siddani Bhaskara Rao

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag

About this paper

Cite this paper

Balasubramanian, K., Parthasarathy, K.R. (1981). In search of a complete invariant for graphs. In: Rao, S.B. (eds) Combinatorics and Graph Theory. Lecture Notes in Mathematics, vol 885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0092254

Download citation

  • DOI: https://doi.org/10.1007/BFb0092254

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11151-1

  • Online ISBN: 978-3-540-47037-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics