Skip to main content

Mathematical modelling of the morphology of streptomyces species

  • Chapter
  • First Online:
Relation Between Morphology and Process Performances

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 60))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ai :

coefficient of the lumped pellet model

A:

area

ci :

concentration of substance i

cHy :

hyphal concentration

cTip :

concentration of tips

D:

diffusion coefficient

f:

number density function

F:

total number of particles per volume

g:

concentration based on cell's volume

HGU:

hyphal growth unit

k:

rate constant

li :

coordinate of i-th section, i=1,2,3

lo :

length of a hypha associated with one nucleotide, or length of a spore

Li :

length of i-th section

M:

number of substrates

N:

number of tips

P:

density of the breaking probability

q:

specific volumetric flow

Q:

volumetric flow

r:

reaction rate

rHy,Tip :

synthesis rate of hyphae, tips

rHyD,TipD :

degradation rate of hyphae, tips

rHyB, TipB :

breakage rate of hyphae, tips

s:

characteristic property

t:

time

u:

growth rate along a characteristic property

V:

volume

Y:

yield coefficient

z:

spatial coordinate

Zr:

radius of a pellet

α:

apical growth velocity

β:

branching rate

γ:

constant

α:

constant

μ:

specific rate

ϖ:

source or sink

ψHy :

activity of branching

ψTip :

activity of apical growth

References

  1. Bushell ME (1988) Growth, product formation and fermentation technology. In: Goodfellow M, Williams ST, Mordanski M (eds) Actinomycetes in biotechnology, Academic Press, London, p 186

    Google Scholar 

  2. Fisher SH (1988) Nitrogen assimilation in streptomycetes. In: Okami Y, Beppu T, Ogawara H (eds) Biology of Actinomycetes, Japan Scientific Societies Press, Tokyo, p 47

    Google Scholar 

  3. Hirsch CF, McCann-McCormick PA (1985) Biology of streptomyces. In: Demain AL, Solomon NA (eds), Biology of industrial microorganisms Benjamin/Cummings Menlo Park, CA, p 291

    Google Scholar 

  4. Treskatis SK, Orgeldinger V, Wolf H., Gilles ED (1997) Biotechnol Bioeng 53: 191

    Article  CAS  Google Scholar 

  5. King R (1996) J Biotechnol 52: 219

    Article  Google Scholar 

  6. King R, Büdenbender Ch (1996) J Biotechnol 52: 235

    Article  Google Scholar 

  7. Bergter F. (1978) Z Allg Mikrobiol 2: 143

    Google Scholar 

  8. Cagney JW, Chittur VK, Lim HC (1984) Biotechnol Bioeng Symp 14:619

    CAS  Google Scholar 

  9. Megee RD III, Kinoshita S, Fredrickson AG, Tsuchiya HM (1970) Biotechnol Bioeng 12 771

    Article  CAS  Google Scholar 

  10. Matsumura M, Imanaka T, Yoshida T, Taguchi H (1981) J Ferment Tech (Japan) 59: 115

    CAS  Google Scholar 

  11. Nestaas E., Wang DIC (1983) Biotechnol Bioeng 25: 781

    Article  CAS  Google Scholar 

  12. Nielsen J (1992) Modelling the growth of filamentous fungi. In: Fiechter A (ed) Adv Biochem Eng Biotechnol 46, Springer, Berlin Heidelberg New York, p 187

    Google Scholar 

  13. Patankar DB, Liu TC, Oolman T (1993) Biotechnol Bioeng 42: 571

    Article  CAS  Google Scholar 

  14. Paul GC, Thomas CR (1996) Biotechnol Bioeng 51: 558

    Article  CAS  Google Scholar 

  15. Aynsley M, Ward AK, Wright AR (1990) Biotechnol Bioeng 35: 820

    Article  CAS  Google Scholar 

  16. Prosser JI, Trinci APJ (1979) J of Gen Microbiol 111: 153

    CAS  Google Scholar 

  17. Lejeune R, Baron GV Accepted for Biotechnol Bioeng

    Google Scholar 

  18. King R, Buschulte TK, Yang H, Gilles ED (1990) Mathematical models of filamentously growing microorganisms. In: Behrens D (ed) Dechema Biotechnology Conferences, vol, 4. Verlag Chemie, Frankfurt, p 989

    Google Scholar 

  19. Yang H (1994) Mathematische Modellierung des Wachstums myzelbildender Mikro organismen. PhD thesis, Universität Stuttgart

    Google Scholar 

  20. Yang H, King R, Reichl U, Gilles ED (1992) Biotechnol Bioeng 39: 49

    Article  CAS  Google Scholar 

  21. Yang H, Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39: 44

    Article  CAS  Google Scholar 

  22. Shomura T, Yoshida J, Amano S, Kojima M, Inouye S, Niida T (1979) J Antibiotics 32:427

    CAS  Google Scholar 

  23. Vitális S, Szabó G, Vályi-Nagy T (1963) Acta Biol Hung 14: 1

    Google Scholar 

  24. Reichl U, King R, Gilles ED (1991) Biotechnol Bioeng 32: 193

    Google Scholar 

  25. Prosser JI, Tough AJ (1991) Crit Rev Biotechnol 10: 253

    CAS  Google Scholar 

  26. Yang H (1993) Mathematical model for filamentous growth of mycelial microorganisms in lab chamber and in batch, fed-batch and continuous cultures. In: Alberghina (ed) ECB 6, Elsevier, Amsterdam, p 845

    Google Scholar 

  27. Meyerhoff J, Tiller V, Bellgardt KH (1995) Bioproc Eng 12: 305

    CAS  Google Scholar 

  28. Kummer C, Kretschmer S (1986) J Basic Microbiol 26: 27

    CAS  Google Scholar 

  29. Prosser JI, Gray DI, Gooday GW (1988) Cellular mechanisms for growth and branch for mation in streptomycetes. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actino mycetes Japan Scientific Societies Press, Tokyo, p 316

    Google Scholar 

  30. Riesenberg D, Bergter F (1979) Z Allg Mikrobiol 19: 415

    CAS  Google Scholar 

  31. Treskatis S, Reichl U, Orgeldinger V, King R, Gilles ED (1992) Process control of fermentations with filamentous microorganisms by means of digital image procesing and pattern recognition. Poster, 6th Europ Conf on Biotechnology, Florence, Italy

    Google Scholar 

  32. Reichl U, Yang H, Gilles ED, Wolf H (1990) FEMS Microbiol Letters 67: 207

    Article  Google Scholar 

  33. King R (1994) Mathematische Modelle myzelförmig, wachsender Mikroorganismen, Fortschrittsber 17, 103, VDI, Düsseldorf

    Google Scholar 

  34. Reichl U (1991) Einsatz eines Bildverarbeitungssystems zur Erfassung der Morphologie und des Wachstums mzyelbildender Mikroorganismen in submerser Kultur. PhD thesis, Universität Stuttgart

    Google Scholar 

  35. Reichl U, Buschulte TK, Gilles ED (1990) J Micros 158: 55

    CAS  Google Scholar 

  36. Kretschmer S (1989) J Basic Microbiol 29: 587

    Google Scholar 

  37. Fiddy C, Trinci APJ (1976) J Gen Microbiol 97: 167

    Google Scholar 

  38. Gray DI, Gooday GW, Prosser JI (1990) J Microbiol Meth 12: 163

    Article  Google Scholar 

  39. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach, Sinauer Associates, Sunderland, MA

    Google Scholar 

  40. Braun S, Vecht-Lifshitz SE (1991) TIBTECH 9: 63

    Google Scholar 

  41. Wittler R, Baumgart H, Lübbers DW, Schügerl K (1986) Biotechnol Bioeng 28: 1024

    Article  CAS  Google Scholar 

  42. Buschulte TK Yang H, King R, Gilles ED (1991) Formation and growth of pellets of streptomyces. In: Reuß M, Chmiel H, Gilles ED, Knackmus HJ (eds) Biochemical Engineering-Stuttgart. G. Fischer, Stuttgart, p 393

    Google Scholar 

  43. Chiu ZS, Zajic JE (1976) Biotechnol Bioeng 18: 1167

    Article  CAS  Google Scholar 

  44. Koch AL (1975) J Gen Microbiol 89: 209

    CAS  Google Scholar 

  45. Emerson S (1950) J Bacteriol 60: 221

    CAS  Google Scholar 

  46. Aiba S, Kobayashi K (1971) Biotechnol Bioeng 13: 583

    Article  CAS  Google Scholar 

  47. Kobayashi T, van Dedem G, Moo-Young M (1973) Biotechnol Bioeng 15: 27

    Article  CAS  Google Scholar 

  48. Phillips DH (1966) Biotechnol Bioeng 8: 456

    Article  CAS  Google Scholar 

  49. Pirt SJ (1966) Proc Roy Soc London B 166: 369

    CAS  Google Scholar 

  50. Yano T, Kodama T, Yamada K (1961) Agr Biol Chem 25: 580

    CAS  Google Scholar 

  51. Chang HN, Moo-Young M (1988) Appl Microbiol Biotechnol 29: 107

    Article  CAS  Google Scholar 

  52. Skowlund CT (1990) Biotechnol Bioeng 35: 502

    Article  CAS  Google Scholar 

  53. Buschulte TK (1992) Mathematische Modellbildung und Simulation von Zellwachstum, Stofftransport und Stoffwechsel in Pellets aus Streptomyceten. PhD thesis, Universität Stuttgart

    Google Scholar 

  54. Buschulte TK, Gilles ED (1990) Modeling and simulation of hyphal growth, metabolism and mass transfer in pellets of streptomyces. In: Christiansen C, Munck L, Villadsen J (eds) Proceedings of the 5th European Congress on Biotechnology, p 279

    Google Scholar 

  55. Taguchi H (1971) The nature of fermentation fluids. In: Ghose TK, Fiechter A (eds) Advances in biochemical engineering 1, Springer, Berling Heidelberg New York, p 1

    Chapter  Google Scholar 

  56. Trück HU, Chmiel H, Hammes WP, Trösch W (1990) Appl Microbiol Biotechnol 33: 139

    Article  Google Scholar 

  57. Schuhman E., Bergter F (1976) Z Allg Mikrobiol 16: 201

    Google Scholar 

  58. Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39: 164

    Article  CAS  Google Scholar 

  59. Edelstein L (1983) J Theor Biol 150: 427

    Article  Google Scholar 

  60. Tough AJ (1989) A theoretical model of Streptomycete growth in submerged culture. PhD thesis, University of Aberdeen

    Google Scholar 

  61. King R, Büdenbender Ch, Oswald G. (1995) Mathematical models for growth and production of single pellets and pellet populations. In: Munack A, Schügerl K (eds) 6th Int Conf Computer Applications in Biotechnology Dechema, Frankfurt, p 154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Schügerl (Volume Editor)

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

King, R. (1998). Mathematical modelling of the morphology of streptomyces species. In: Schügerl, K. (eds) Relation Between Morphology and Process Performances. Advances in Biochemical Engineering/Biotechnology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102280

Download citation

  • DOI: https://doi.org/10.1007/BFb0102280

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62567-4

  • Online ISBN: 978-3-540-68082-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics