Skip to main content

Modeling the mycelium morphology of Penicillium species in submerged cultures

  • Chapter
  • First Online:
Relation Between Morphology and Process Performances

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 60))

Abstract

Modeling the mycelium morphology of filamentous fungi is valuable in connection with studies of their growth mechanisms, i.e. tip extension and branching, and in this work a general frame for morphological models is presented. The general frame consist of a population balance equation (PBE) for a two-dimensional density function, which describes the properties, i.e. the number of tips and the total hyphal length, of a population of hyphal elements. From the general PBE, balances for the average properties of the population can be derived. After presentation of the general model frame the kinetics for the different processes influencing the mycelium morphology, i.e. spore germination, growth, and hyphal fragmentation, are reviewed. Thereafter follows an overview of different kinetic models presented in the literature. The models are divided into four groups: single hyphal element/branch models; average property models; population models; and morphological structured models. Models within the first three groups are discussed and presented within the general frame. Finally some solutions to the general PBE are presented and aspects on model verification based on experimental data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

B(α, β):

the beta function

c:

steepness/skewness parameter in Eq. (14)

cv :

concentration of vesicles at the hyphal tip

d:

diameter of the hyphae

ds :

diameter of the stirrer

D:

dilution rate

e:

the concentration of hyphal elements

espore :

the inoculum concentrations of spores

f(lt,n,t):

number density function

f0(lt,n):

initial number density function

f(r):

absorption rate of vesicles at the hyphal tip at a radius r from the center axis

g(z,t):

germination frequency

h(lt,n,z,t):

net rate of formation of hyphal elements with the properties (lt,n)

hf(lt,n,z,t):

net rate of formation of hyphal elements with the properties (lt,n) by fragmentation

hg(lt,n,z,t):

net rate of formation of hyphal elements with the properties (lt,n) by germination

kbran :

branching parameter

ktensile :

tensile strength of the hyphal wall

K:

allometric coefficient

Kbr :

saturation parameter

Kt :

saturation parameter

Kv :

saturation parameter in Eq. (25)

ktip :

maximum tip extension rate

lbranch :

the length at which branching starts

le,av :

average effective length

le,max :

maximum effective length at which fragmentation does not occur

lt :

total length of a hyphal element

lt,av :

average total length per hyphal element

lt,g :

length of a newly germinated spore

ltip :

constant in Eq. (19)

n:

number of active growing tips in a hyphal element

nav :

average number of tips per hyphal element

N:

stirrer speed

p((lt′,n′),(lt,n)):

partitioning function

pl(lt,z,t):

probability that a newly germinated spore will have the hyphal length lt

pn(n,z,t):

probability that a newly germinated spore will have n number of tips

Pg :

power input at gassed conditions

qbran(lt,n,z):

branching frequency

qfrag(lt,n,z):

rate of fragmentation

qtip(lt,n,z):

tip extension rate

r:

the radius of the hyphae

rabs :

absorption rate of vesicles at the hyphal tip

rabs,max :

maximum absorption rate of vesicles at the hyphal tip

F :

the normalized germination time

tc :

the circulation time

tf :

the time at which germination stops

ts :

the time at which germination starts

V:

the volume of the culture

ym :

state-vector of the hyphal element

yviab :

the viability of spores

z:

vector of environmental conditions

α:

steepness/skewness parameter in Eq. (13)

β:

steepness/skewness parameter in Eq. (13)

λ:

the time at which half of the viable spores have germinated

References

  1. Gravesen S, Frisvad JC, Samson RA (1994) Microfungi. Munksgaard, Copenhagen

    Google Scholar 

  2. Nielsen J (1992) Adv Biochem Eng/Biotechnol 46:187

    CAS  Google Scholar 

  3. Nielsen J, Carlsen M (1996) Fungal pellets. In: Willaert RG, Baron, GV, De Backer (eds) Immobilised living cell systems: modelling and experimental methods. John Wiley. (in press)

    Google Scholar 

  4. Ramkrishna D (1979) Adv Biochem Eng/Biotechnol 11:1

    Google Scholar 

  5. Nielsen J, Krabben P (1995) Biotech Bioeng 46:588

    Article  CAS  Google Scholar 

  6. Nielsen J (1993) Biotech Bioeng 41:715

    Article  CAS  Google Scholar 

  7. Sussman (1966) The fungi, vol 2, p 733

    Google Scholar 

  8. Paul GC, Kent CA, Thomas CR (1992) Biotechnol Bioeng 42:11

    Article  Google Scholar 

  9. Yanagita T (1957) Arch Mikrobiol 26:329

    Article  CAS  Google Scholar 

  10. Ekundayo JA, Carlile MJ (1964) J Gen Microbiol 35:261

    CAS  Google Scholar 

  11. Ohmori K, Gottlieb, D (1965) Phytopathol 55:1328

    CAS  Google Scholar 

  12. Gottlieb D, van Etten, JL (1964) J Bacteriol 88:114

    CAS  Google Scholar 

  13. Fletcher J (1969) Trans Br Mycol Soc 53:425

    Google Scholar 

  14. Kornfield JM, Knight SG (1960) Bact Proc 19:151

    Google Scholar 

  15. Gottlieb D, Ramachandran S (1960) Mycologia 52:599

    Google Scholar 

  16. Nielsen J (1997) Physiological engineering aspects of Penicillium chrysogenum. World Science Publishing Co., Singapore

    Google Scholar 

  17. Nyeri L, Lengyel ZL (1965) Biotechnol Bioeng 7:343

    Article  Google Scholar 

  18. Nyeri L (1967) Z Allg Mikrobiol 7:107

    Google Scholar 

  19. Metz B (1976) PhD thesis, Technical University of Delft, Delft

    Google Scholar 

  20. Trinci APJ, Whittaker C (1968) Trans Br Mycol Soc 51:594

    Article  Google Scholar 

  21. Fletcher J, Morton AG (1970) Trans Br Mycol Soc 54:65

    CAS  Google Scholar 

  22. Sekiguchi J, Gaucher GM, Costerton JW (1975) Can J Microbiol 21:2048

    CAS  Google Scholar 

  23. Sekiguchi J, Gaucher GM, Costerton JW (1975) Can J Microbiol 21:2059

    Article  CAS  Google Scholar 

  24. Bosch A, Maronna RA, Yantorno OM (1995) Process Biochem 30:599

    Article  CAS  Google Scholar 

  25. Lejeune R, Nielsen J, Baron G (1995) Biotechnol Bioeng 47:609

    Article  CAS  Google Scholar 

  26. Reinhardt MO (1892) Jahrb Wiss Bot 23:479

    Google Scholar 

  27. Zalokar M (1959) Am J Bot 46:602

    Article  CAS  Google Scholar 

  28. Fiddy C, Trinci APJ (1976) J Gen Microbiol 97:169

    CAS  Google Scholar 

  29. Paul GC (1992) PhD thesis, University of Birmingham, Birmingham

    Google Scholar 

  30. Paul GC, Kent CA, Thomas CR (1993) Trans I Chem E 70:13

    Google Scholar 

  31. Money NP (1994) Osmotic adjustment and the role of turgor in mycelial fungi. In: Wessels JGH, Meinhardt F (eds) The mycota, vol I: growth, differentiation and sexuality. Springer, Berlin Heidelberg New York

    Google Scholar 

  32. Trinci APJ (1978) The duplication cycle and vegatative development in moulds, p 134–163. In: Smith JE, Berry DR (eds) The filamentous fungi, vol III. Edward Arnold, London

    Google Scholar 

  33. Bartnicki-Garcia S (1973) Symp Soc Gen Microbiol 23:245

    Google Scholar 

  34. Bartnicki-Garcia S (1993) Role of vesicles in apical growth and a new mathematical model of hyphal morphological model of hyphal morphogenesis, pp 211–232. In: Heath IB (ed.) Tip growth in plant and fungal cells. Academic Press, San Diego, Calif

    Google Scholar 

  35. Grove SN (1978) The cytology of hyphal tip growth, pp 28–50. In: Smith JE, Berry DR (eds.), The filamentous fungi, vol III. Edward Arnold, London.

    Google Scholar 

  36. Trinci APJ (1984) Regulation of hyphal branching and hyphal orientation. pp 23–52. In: Jennigs DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge

    Google Scholar 

  37. Morrison KB, Righelato RC (1974) J Gen Microbiol 81:193

    Google Scholar 

  38. Robinson PM, Smith JM (1979) Proc Br Mycol Soc 72:39

    Article  Google Scholar 

  39. Robson GD, Wiebe MG, Trinci APJ (1991) J Gen Microbiol 137:963

    CAS  Google Scholar 

  40. Wiebe MG, Trinci APJ (1991) Biotechnol Bioeng 38:75

    Article  CAS  Google Scholar 

  41. Dicker JW, Turian G (1990) J Gen Microbiol 136:1413

    CAS  Google Scholar 

  42. Reissig JL, Kinney SG (1983) J Bacteriol 154:1397

    CAS  Google Scholar 

  43. Yang H, Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39:49

    Article  CAS  Google Scholar 

  44. Pirt SJ, Callow, DS (1960) J Appl Bact 23:87

    Google Scholar 

  45. Savage GM, van der Brook MJ (1946) J Bacteriol 52:385

    CAS  Google Scholar 

  46. van Suijdam JC, Metz B (1981) Biotechnol Bioeng 23:111

    Article  Google Scholar 

  47. Tucker KG, Kelly T, Delgrazia P, Thomas CR (1992) Biotechnol Prog 8:353

    Article  CAS  Google Scholar 

  48. Reuß M (1988) Chem Eng Technol 11:178

    Article  Google Scholar 

  49. Ayazi Shanlou P, Makagiansar HY, Ison AP, Lilly MD, Thomas CR (1994) Chem Eng Sci 49:2621

    Article  Google Scholar 

  50. Smith JJ, Lilly MD, Fox RI (1990) Biotechnol Bioeng 35:1011

    Article  CAS  Google Scholar 

  51. Prosser JI (1991) Mathematical modeling of vegative growth of filamentous fungi. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology, vol 1. Marcel Dekker, New York, p 591

    Google Scholar 

  52. Aynsley M, Ward AC, Wright AR (1990) Biotechnol Bioeng 35:820

    Article  CAS  Google Scholar 

  53. Cohen D (1967) Nature 216:246

    Article  Google Scholar 

  54. Leopold LB (1971) J Theor Biol 31:339

    Article  CAS  Google Scholar 

  55. Trinci APJ, Saunders PT (1977) J Gen Microbiol 103:243

    Google Scholar 

  56. Saunders PT, Trinci APJ (1979) J Gen Microbiol 110:469

    Google Scholar 

  57. Koch AL (1982) J Gen Microbiol 128:947

    Google Scholar 

  58. Bartnicki-Garcia S, hergert F, Gierz G (1990) A novel computer model for generating cell shape: application to fungal morphogenesis. In: Kuhn PJ, Trinci APJ, Jung MJ, Goosey MW, Copping LG (eds). Springer, Berlin Heidelberg New York

    Google Scholar 

  59. Bartnicki-Garcia S, Hergert F, Gierz G (1989) Protoplasma 153:46

    Article  Google Scholar 

  60. Green PB (1969) Annu Rev Plant Physiol 20:365

    Article  Google Scholar 

  61. Riva Ricci D da, Kendrick B (1972) Can J Bot 50:2455

    Article  Google Scholar 

  62. Thompson D'Arcy W (1952) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  63. Prosser JI, Trinci APJ (1979) J Gen Microbiol 111:153

    CAS  Google Scholar 

  64. Bergter F (1978) Z Allg Mikrobiol 18:143

    CAS  Google Scholar 

  65. Viniegra-Gonzáles G, Saucedo-Castañeda G, López-Isunza F, Favela-Torres E (1993) Biotech Bioeng 42:1

    Article  Google Scholar 

  66. Katz D, Goldstein D, Rosenberger RF (1972) J Bacteriol 109:1097

    CAS  Google Scholar 

  67. Schuhmann E, Bergter F (1976) Z Allg Mikrobiol 16:201

    CAS  Google Scholar 

  68. Eakman JM, Fredrickson, AG, Tsuchiya HM (1966) Chem Eng Prog Symp Ser 69:37

    Google Scholar 

  69. Krabben P, Nielsen J (1996) MS in preparation

    Google Scholar 

  70. Yang H, Reichl U, King R, Gilles ED (1992) Biotechnol Bioeng 39:44

    Article  CAS  Google Scholar 

  71. Meyerhoff J, Tiller V, Bellgardt K-H (1995) Bioproc Eng 12:305

    CAS  Google Scholar 

  72. Collinge AJ, Trinci APJ (1974) Arch Microbiol 99:353

    Article  CAS  Google Scholar 

  73. Yang, H. (1994) Mathematical model for filamentous growth of mycelial microorganisms in lab chambers and in batch, fed-batch and continuous cultures. In: Alberghina L, Frontali L, Sensi P (eds). Proceedings of the 6th European Congress on Biotechnology 13–17 June 1993. Elsevier Amsterdam, Vol II, p 845

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Schügerl (Volume Editor)

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Krabben, P., Nielsen, J. (1998). Modeling the mycelium morphology of Penicillium species in submerged cultures. In: Schügerl, K. (eds) Relation Between Morphology and Process Performances. Advances in Biochemical Engineering/Biotechnology, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102281

Download citation

  • DOI: https://doi.org/10.1007/BFb0102281

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62567-4

  • Online ISBN: 978-3-540-68082-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics