Skip to main content

Quantifying and directing metabolite flux: Application to amino acid overproduction

  • Chapter
  • First Online:
Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 54))

Abstract

The aim of understanding the metabolism of the cell in order to derive how high-level product formation can be achieved has led to astonishing progress with respect to the in vivo quantification of carbon fluxes and the quantification of flux control. This quantification usually holds only for one specific flux situation thus requiring additional approaches in order to obtain indications of how to produce a flux increase of relevance useful for overproduction. This is in part due to the complex responses of cells to high flux increases, including altered gene expression, alteration of energy metabolism, or accumulation of toxic intermediates, thus preventing a quantitative prediction of the targets to be altered. Instead, experimental techniques have to be used to examine the resulting consequences for each individual example. Currently, it is being found that branching points in biosynthesis, precursor supply in fueling reactions, and export of metabolites deserve particular attention in order to increase metabolite flux. By applying molecular techniques, to such selected targets of the l-lysine and l-isoleucine biosynthesis of Corynebacterium glutamicum., high amino acid overproduction can be obtained with this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kacser H, Burns JA (1981) Genetics 97: 639.

    CAS  Google Scholar 

  2. Heinrich R, Rapoport SM, Rapoport TA (1977) Progr. Biophys 32: 1.

    Article  CAS  Google Scholar 

  3. Hayashi K, Sakamoto N (1986) Dynamic analysis of enzyme systems. Japan Scientific Societies, Tokyo

    Google Scholar 

  4. Segel LA (1975) Enzyme kinetics. John Wiley, New York.

    Google Scholar 

  5. Cayley S, Lewis BA, Guttman HJ, Record JR (1991) J Mol Biol 222: 281

    Article  CAS  Google Scholar 

  6. Joshi A, Palsson BO (1990) J Theor Biol 142: 69

    Article  CAS  Google Scholar 

  7. Vallino JJ, Stephanopoulos G (1993) Biotech Bioeng 41: 633

    Article  CAS  Google Scholar 

  8. Peters-Wendisch P, Eikmanns BJ, Thierbach G, Bachmann B, Sahm H (1993) FEMS Microbiol Lett 112: 269.

    Article  CAS  Google Scholar 

  9. Savageau MA, Sorribas A (1989) J Theoret Biol 154: 131

    Article  Google Scholar 

  10. Crabtree B, Newsholme EA (1987) Biochem J 247: 113

    CAS  Google Scholar 

  11. Groen AK, Van der Meer R, Westerhoff HV, Wanders RJA, Akerboom TPM, Tager JM (1982) in: Sies H (ed) Metabolic Compartmentation, Academic Press, p 9

    Google Scholar 

  12. Flint HJ, Tateson RW, Barthhlemess IB, Porteous DJ, Donachie WD, Kacser H (1981) Biochem J 200: 231.

    CAS  Google Scholar 

  13. Delgado J, Meruane J, Liao JC (1993) Biotechnol Bioeng 41: 1121

    Article  CAS  Google Scholar 

  14. De Koning W, Van Dam K (1992) Anal Biochem 204: 118.

    Article  Google Scholar 

  15. Small JR, Kacser H (1993) Eur J Biochem 213: 613

    Article  CAS  Google Scholar 

  16. Small JR, Kacser H (1993) Eur J Biochem 213: 625

    Article  CAS  Google Scholar 

  17. Quant PA (1993) TIBS 18: 26

    CAS  Google Scholar 

  18. Groen AK, Westerhoff HV (1990) in: Cornish-Bowden A, Cárdenas ML (eds) Control of metabolic processes. Plenum Press, New York, p 101

    Google Scholar 

  19. Kacser H, Acerenza L (1993) Eur J Biochem 216: 361.

    Article  CAS  Google Scholar 

  20. Neijssel OM, Teixeira de Mattos MJ (1994) Mol Microbiol 13: 179

    Article  CAS  Google Scholar 

  21. Ikeda M, Nakanish K, Kino K, Katsumata R (1994) Biosci Biotech Biochem 58: 674.

    CAS  Google Scholar 

  22. Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Appl Environ Microbiol 60: 126

    CAS  Google Scholar 

  23. Ramos A, Jordan KN, Cogan TM, Santos H (1994) Appl Environ Microbiol 60: 1739.

    CAS  Google Scholar 

  24. Blum JJ, Stein RB (1982) in: Goldberger R (ed) Biological Regulation and Development. Plenum Press, New York, p 99

    Google Scholar 

  25. Wood T (1985) in: Wood T (ed) The pentose phosphate pathway. Academic Press, Orlando etc, p 3

    Google Scholar 

  26. Walsh K, Koshland Jr. DE (1984) J Biol Chem 259: 9646

    CAS  Google Scholar 

  27. Walsh K, Koshland Jr. DE (1985) J Biol Chem 260: 8430

    CAS  Google Scholar 

  28. Den Hollander JA, Behar KL, Shulman RG (1981) Proc Natl Acad Sci USA 78: 2693

    Article  Google Scholar 

  29. Bhaumik SR, Sonawat HM (1994) J Bact 176: 2172

    CAS  Google Scholar 

  30. Künnecke B, Cerdan S, Seelig J (1993) NMR in Biomed 6: 264

    Google Scholar 

  31. Lapidot A, Gopher A (1994) J Biol Chem 269: 27198

    CAS  Google Scholar 

  32. Jones JG, Sherry AD, Jeffrey FMH, Storey CJ, Malloy CR (1993) Biochemistry 32: 12240

    Article  CAS  Google Scholar 

  33. London RE (1992) in: Berliner, LJ, Reuben J (eds.) Biological Magnetic Resonance. Plenum Press, New York p. 6 (In Vivo Spectroscopy, vol 11)

    Google Scholar 

  34. Kanamori K, Weiss RL, Roberts JD (1987) J Biol Chem 262: 11038

    CAS  Google Scholar 

  35. Choi B, Roberts JE, Evans JNS, Roberts MF (1986) Biochemistry 25: 2243

    Article  CAS  Google Scholar 

  36. Ross BD, Kingsley PB, Ben-Yosef O (1994) Biochem J 302: 31

    CAS  Google Scholar 

  37. Brindle KM (1988) Progr NMR Spectr 20: 257

    Article  CAS  Google Scholar 

  38. Schoberth SM, Chapman BE, Kuchel PW, Wittig R, Grotendorst J, Jansen P, de Graaf AA (1994) Abstracts of the 12th European Experimental NMR Conference, Oulu Finland p 43

    Google Scholar 

  39. Vallino JJ, Stephanopoulos G (1990) in: Sikdar SK, Bier M, Todd P (eds) Frontiers in bioprocessing, Boca Raton, CRC Press

    Google Scholar 

  40. Vallino JJ, Stephanopoulos G (1993) Biotechnol Bioeng 41: 633

    Article  CAS  Google Scholar 

  41. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Biotechnol Bioeng in press

    Google Scholar 

  42. Walker TE, Han CH, Kollman VH, London RE, Matwiyoff NA (1982) J Biol Chem 257: 1189

    CAS  Google Scholar 

  43. Stephanopoulos G, Vallino JJ (1991) Science 252: 1675

    Article  CAS  Google Scholar 

  44. Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW (1994) Biotechnol Bioeng 44: 563

    Article  CAS  Google Scholar 

  45. Kashiwaya Y, Sato K, Tshuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV (1994) J Biol Chem 269: 25502

    CAS  Google Scholar 

  46. Savinell JM, Palsson BO (1992) J Theor Biol 155: 201

    Article  CAS  Google Scholar 

  47. Varma A, Palsson BO (1994) Bio/Technology 12: 994

    Article  CAS  Google Scholar 

  48. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Int J Syst Bacteriol 41255

    Google Scholar 

  49. Kinoshita S, Udaka S, Shimono M (1957) J Gen Appl Microbiol., Tokyo 3: 193

    CAS  Google Scholar 

  50. Kinoshita S, Nakayama K (1978) in: Primary products of metabolism, ed AH Rose

    Google Scholar 

  51. Furuya A, Sato A (1975) Appl Environ Microbiol 30: 480

    CAS  Google Scholar 

  52. Crueger W, Crueger A (1989) Biotechnologie, Lehrbuch der Angewandten Mikrobiologie. Oldenburg Verlag, München Wien

    Google Scholar 

  53. Eikmanns BJ, Eggeling L, Sahm H (1994) Antonie von Leeuwenhoek 64: 145

    Article  CAS  Google Scholar 

  54. Morbach S, Sahm H, Eggeling L (1995) Appl Environ Microbiol 61: 4315

    CAS  Google Scholar 

  55. Patniak R, Spitzer RG, Liao JC (1995) Biotechnol Bioeng 46: 361

    Article  Google Scholar 

  56. Kleemann A, Leuchtenberger W, Hoppe B, Tanner H (1985) in: Ullmanns' Encyclopedia of Industrial Chemistry 2A, 57–97. VCH, Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  57. Pátek M, Hochmannova J, Nesvera J (1993) Folia Microbiol 38: 355

    Google Scholar 

  58. Masuda M, Takamatsu S, Nishimura N, Komatsubara S, Tosa T (1993) Appl Biochem Biotech 37: 255

    Google Scholar 

  59. Motoyama H, Yano H, Ishino S, Anazawa H, Teshiba S (1994) Appl Microbiol Biotehnol 42: 67

    Article  CAS  Google Scholar 

  60. Motoyama H, Anazawa H, Katsumata R, Araki K, Teshiba S (1993) Biosc. Biotech. Biochem 57: 82

    CAS  Google Scholar 

  61. Stackebrandt E, Woese CR (1981) in: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge

    Google Scholar 

  62. Tebbe C, Vahjen W, Munch JC, Feldman S, Sahm H, Gellissen G, Amore R, Hollenberg CP (1994) BioEngineering 10: 14

    Google Scholar 

  63. Dedhia NN, Hottiber T, Bailey JE (1994) Biotechnol Bioeng 44: 132

    Article  CAS  Google Scholar 

  64. Aristidou AA, San K, Bennett GN (1994) Biotechnol Bioeng 44: 944

    Article  CAS  Google Scholar 

  65. Hosono K, Kakuda H, Ichihara S (1995) Biosci Biotech Biochem 59: 256

    CAS  Google Scholar 

  66. Correia A, Martin JF, Castro JM (1994) Microbiology 140: 2841.

    Article  CAS  Google Scholar 

  67. Kalinowski J, Bathe B, Quast K, Pühler A (1995) Annual meeting of the Genetic society, Bielefeld, Sept. 18–21

    Google Scholar 

  68. Vrljic M, Konemeyer W, Sahm H, Eggeling L (1995) J Bacteriol 177: 4021

    CAS  Google Scholar 

  69. Cremer J, Eggeling L, Sahm H (1991) Appl Environ Microbiol 57: 1746

    CAS  Google Scholar 

  70. Liebl W, Sinskey AJ (1988) in: Ganesan AT, Hoch JA (eds) Genetics and biotechnology of bacilli, vol 2, Academic Press, p383

    Google Scholar 

  71. Wohlleben W, Muth G, Kalinowski J (1994) in: Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology vol 2, VCH, Weinheim, p457

    Google Scholar 

  72. Eikmannas BJ, Kleinertz E, Liebl W, Sahm H (1991) Gene 102: 93

    Article  Google Scholar 

  73. Malumbres M, Gil JA, Martin JF (1993) Gene 134: 15–24.

    Article  CAS  Google Scholar 

  74. Billmann-Jacobe H, Hodgson ALM, Lightowerlers M, Wood PR, Radford AJ (1994) Appl Biochem Biotech 60: 1641

    Google Scholar 

  75. Billmann-Jacobe H, Wang L, Kortt A, Stewart D, Radford AJ (1995) Appl Environ Microbiol (1995) 61: 1610

    Google Scholar 

  76. Linton JD (1990) FEMS Microbiol Rev 75: 1

    Article  CAS  Google Scholar 

  77. Shvinka YE, Viestur UE, Toma MK (1979) Microbiology-Engl Tr 48: 10

    Google Scholar 

  78. Kawahara Y, Tanaka T, Ikeda S, Sone N (1988) Agr Biol Chem Tokyo 52: 1979.

    CAS  Google Scholar 

  79. Patniak R, Spitzer RG, Liao JC (1995) Biotechnol Bioeng 46: 361

    Article  Google Scholar 

  80. Chao Y, Liao JC (1993) Appl Environ Microbiol 59: 4261

    CAS  Google Scholar 

  81. Sugita T, Komatsubara S (1989) Appl Microbiol Biotechnol 30: 290

    Article  CAS  Google Scholar 

  82. Katz J, Wals P, Lee WP (1993) J Biol Chem 268: 25509.

    CAS  Google Scholar 

  83. Hueck CJ, Hillen W (1995) Mol Microbiol 15: 395.

    Article  CAS  Google Scholar 

  84. Mori M, Shiio I (1987) Agr Biol Chem Tokyo 51: 129.

    CAS  Google Scholar 

  85. Jetten MSM, Pitoc GA, Follettie MT, Sinskey AJ (1994) Appl Microbiol Biotechnol 41: 47

    CAS  Google Scholar 

  86. Peters-Wendisch P, Weidisch V, de Graaf, AA, Eikmanns B, Sahm H (1996) Arch Microbiol submitted

    Google Scholar 

  87. Jetten MS, Pitoc GA, Follettie MT, Sinskey AJ (1994) Appl Microbiol Biotechnol 41: 47

    CAS  Google Scholar 

  88. Eikmanns BJ, Follettie MT, Griot MU, Sinskey AJ (1989) Mol Gen Genet 218: 330

    Article  CAS  Google Scholar 

  89. Tosaka O, Takinami K (1978) Agr Biol Chem Tokyo 42: 95

    CAS  Google Scholar 

  90. Ishino S, Yamaguchi K, Shirahata K, Araki K (1984) Agr Biol Chem Tokyo 48: 2557

    CAS  Google Scholar 

  91. Kindler SH, Gilvarg C (1960) J. Biol Chem 235: 3532

    CAS  Google Scholar 

  92. Weinberger S, Gilvarg C (1970) J Bacteriol 101: 323

    CAS  Google Scholar 

  93. White PJ (1983) J Gen Microbiol 129: 739

    CAS  Google Scholar 

  94. Schrumpf B, Schwarzer A, Kalinowski J Pühler A, Eggeling L, Sahm H (1991) J Bacteriol 173: 4510

    CAS  Google Scholar 

  95. Sonntag K, Eggeling L, de Graaf AA Sahm H (1993) Eur J Biochem 213: 1325

    Article  CAS  Google Scholar 

  96. Jorgensen H, Nielsen J, Villadsen J, Mollgaard H (1995) Biotechnol Bioeng 46: 117

    Article  CAS  Google Scholar 

  97. Patniak R, Spitzer RG, Liao Jc (1995) Biotechnol Bioeng 46: 361

    Article  Google Scholar 

  98. Goel A, Ferrance J, Jeong J, Attai MM (1993) Biotechnol Bioeng 42: 686

    Article  CAS  Google Scholar 

  99. Portais J, Schuster R, Merle M, Canoni P (1993) Eur J Biochem 217: 457

    Article  CAS  Google Scholar 

  100. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  101. Ishino S, Shimomura-Nishimuta J, Yamaguchi K, Shirahata K, Araki K (1991) J Gen Appl Microbiol Tokyo 37: 157

    CAS  Google Scholar 

  102. Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS (1994) Biotech Bioeng 43: 1059

    Article  CAS  Google Scholar 

  103. Schrumpf B, Eggeling L, Sahm H (1992) Appl Microbiol Biotechnol 37: 566

    Article  CAS  Google Scholar 

  104. Oguiza JA, Malumbres M, Erian G, Pisabarro A, Mateos LM, Martin F, Martin JF (1993) J Bacteriol 175: 7356

    CAS  Google Scholar 

  105. Schrumpf B (1991) Diss. Universität Disseldorf

    Google Scholar 

  106. Cremer J, Treptow C, Eggeling L., Sahm H (1988) J Gen Microbiol 134: 3221

    CAS  Google Scholar 

  107. Shiio I, Miyajima R (1969) J Biol Chem Tokyo 65: 849

    CAS  Google Scholar 

  108. Satiawihardja B, Cail RG, Rogers PL (1993) Biotechnol Lett 15: 577

    Article  CAS  Google Scholar 

  109. Coello N, Pan JG, Lebeault JM (1992) Appl Microbiol Biotechnol 38: 259.

    CAS  Google Scholar 

  110. Kiss RD, Stephanopoulos G (1991) Biotechnol Prog 7: 501

    Article  CAS  Google Scholar 

  111. Nara T, Misawa M, Kinoshita S (1968) Agr Biol Chem 32: 1153

    CAS  Google Scholar 

  112. Patek M, Krumbach K, Eggeling L, Sahn H (1994) Appl Environ Microbiol 60: 133

    CAS  Google Scholar 

  113. Tempest DW, Neijssel OM (1992) FEMS Microbiol Lett 100: 169

    Article  CAS  Google Scholar 

  114. Cashel M, Rudd K (1987) in: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. American Soc. of Microbiol p 1410

    Google Scholar 

  115. Aiba S, Tsunekawa H, Imanaka T (1982) Appl Environ Microbiol 43: 289

    CAS  Google Scholar 

  116. Gouesbet G, Blanco C, Hamelin J, Bernard T (1992) J Gen Microbiol 138: 959

    CAS  Google Scholar 

  117. Tomita K, Nakanish T, Kuratsu Y (1992) Biosci Biotech Biochem 56: 763

    CAS  Google Scholar 

  118. Booth IR, Higgins CF (1990) FEMS Microbiol Rev 75: 239

    Article  CAS  Google Scholar 

  119. Katsumata R, Ikeda M (1993) Bio/technology 11: 921

    Article  CAS  Google Scholar 

  120. Sano K, Shiio I (1970) J Gen Appl Microbiol Tokyo 16: 373

    CAS  Google Scholar 

  121. Seep-Feldhaus AH, Kalinowski J, Pühler A (1991) Mol Microbiol 5: 2995

    Article  CAS  Google Scholar 

  122. Rossol I, Pühler A (1992) J Bacteriol 174: 2968

    CAS  Google Scholar 

  123. Katsumata R, Mizukami T, Kikuchi Y, Kino K (1986) in: Alaceviv M, Hranueli D, toman Z (eds) Fifth Int. Symp on the Genetics of Ind Microorganisms, Zagreb, Yugoslavia, p 217

    Google Scholar 

  124. Ger Y, Chen S, Chiang H, Shiuan D (1994) J Biochem 116: 986

    CAS  Google Scholar 

  125. Möckel B, Eggeling L, Sahm H (1994) Mol Microbiol 13: 833

    Article  Google Scholar 

  126. Ishida M, Kawashima H, Sato K, Hashiguchi K, Ito H, Enei H, Nakamori S (1994) Biosci Biotech Biochem 58: 768

    Article  CAS  Google Scholar 

  127. Archer JAC, Solow-Cordero DE, Sinskey AJ (1991) Gene 107: 53

    Article  CAS  Google Scholar 

  128. Dong H, Nilsson L, Kurland CG (1995) J Bacteriol 177: 1497

    CAS  Google Scholar 

  129. Jetten MSM, Follettie MT, Sinskey AJ (1995) Appl Microbiol Biotechnol 41: 76

    Article  Google Scholar 

  130. Shiio I, Yokota A, Kawamura K (1989) Agr Bio Chem 53: 2169

    CAS  Google Scholar 

  131. LaPorte D, Walsh K, Koshland Jr DE (1984) J Biol Chem 259: 14068

    CAS  Google Scholar 

  132. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Mol Microbiol 5: 1197.

    Article  CAS  Google Scholar 

  133. Shiio I, Sano K (1969), J Gen Appl Microbiol Tokyo 15: 267

    CAS  Google Scholar 

  134. Lu J, Chen J, Liao C (1994) Biotechnol Lett 16: 449

    Article  CAS  Google Scholar 

  135. Miyajima R, Otsuka S, Shiio I (1968) J Biochem Tokyo 63: 139

    CAS  Google Scholar 

  136. Miyajima R, Shiio I (1971) Agr Biol Chem 35: 424

    CAS  Google Scholar 

  137. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie M, Archer JA, Sinskey AJ (1988) Mol Microbiol 2: 63

    Article  CAS  Google Scholar 

  138. Bröer S, Eggeling L, Krämer R (1993) Appl Environ Microbiol 59: 316

    Google Scholar 

  139. Bröer S, Krämer R (1991) Eur J Biochem 202: 131

    Article  Google Scholar 

  140. Eikmanns B, Metzger M, Reinscheid D, Kircher M, Sahm H (1991) Appl Microbiol Biotechnol 34: 617

    Article  CAS  Google Scholar 

  141. Zittrich S, Krämer R (1994) J Bacteriol 176: 6892.

    CAS  Google Scholar 

  142. Ebbighausen H, Weil B, Krämer R (1989) Appl Microbiol Biot 31: 184

    Article  CAS  Google Scholar 

  143. Colon GE, Jetten MSM, Nguyen TT, Gubler ME, Follettie MT, Sinskey AJ, Stephanopoulos G (1994) Appl Environ Microbiol 61: 74

    Google Scholar 

  144. Bailey JE (1991) Science 252: 1668

    Article  CAS  Google Scholar 

  145. Yamaguchi K, Ishino S, Araki K, Shirahata K (1986) Agr Biol Chem 50: 2453

    CAS  Google Scholar 

  146. Misono H, Ogasawara M, Nagasaki S (1986) Agr Biol Chem 50: 2729

    CAS  Google Scholar 

  147. De Hollander JA (1994) Appl Microbiol Biotechnol 42: 508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Sahm (Volume Editor)C. Wandrey (Volume Editor)

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggeling, L., Sahm, H., de Graaf, A.A. (1996). Quantifying and directing metabolite flux: Application to amino acid overproduction. In: Sahm, H., Wandrey, C. (eds) Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102331

Download citation

  • DOI: https://doi.org/10.1007/BFb0102331

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60669-7

  • Online ISBN: 978-3-540-48526-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics