Skip to main content

Numerical solutions of thermoacoustic and buoyancy-driven transport in a near critical fluid

  • Part I Critical Point Phenomena and Adsorption
  • Conference paper
  • First Online:
Materials and Fluids Under low Gravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 464))

Abstract

This paper presents the mechanisms of heat and mass transport of 1D and 2D low Mach number, unsteady, viscous, low heat diffusing, hypercompressible Navier-Stokes equations of a van der Waals gas (CO2). The results have been focused on some striking behaviours compared to those obtained for normally compressible gases: i) heat equilibration is still achieved very fast under normal gravity conditions, as under zero-g conditions, by the Piston Effect before buoyancy convection has time to enhance heat transport; ii) mass equilibration is achieved on a much longer time scale by a quasi isothermal buoyant convection; iii) due to the very high compressibility, a stagnation point effect as that encountered in high speed flows provokes an overheating of the upper wall of a heated square cavity; iv) a significant difference with the convective single roll pattern generated under the same condition in normal CO2 is also found: on the Piston Effect time scale, under the form of a Marangoni-like pattern due to the very thin boundary layer-localised density gradients; on the heat diffusion time scale under the form of a double roll convective structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Zappoli, Phys. Fuids A 4 (1992) 1040.

    Article  ADS  Google Scholar 

  2. B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenoun and D. Beysens, Phys. rev. A 41 (1990) 2224.

    Article  ADS  Google Scholar 

  3. P. Guenoun, D. Beysens, B. Khalil, Y. Garrabos, B. Kammoun, B. Le Neindre and B. Zappoli, Phys. Rev. E 47 (1993) 1531.

    Article  ADS  Google Scholar 

  4. A. Onuki, H. Hao and R.A. Ferrell, Phys. Rev. A 41 (1990) 2256.

    Article  ADS  Google Scholar 

  5. B. Zappoli, P. Carles, Europ. J. of Mech. B 14 (1) (1995) 41–65.

    MATH  Google Scholar 

  6. B. Zappoli, A. Durand-Daubin, Phys. Fuids 6 (1994) 1929–36.

    Article  ADS  Google Scholar 

  7. S. Amiroudine, J. Ouazzani, B. Zappoli, P. Carles, Numerical Solutions of 1D unsteady hypercompressible flows using finite volume methods, submitted to Int. J. of Num. Meth. for Heat and Fluid Flow (1995).

    Google Scholar 

  8. P. Carles, B. Zappoli, Acoustic Saturation of the critical speeding up, to appear in Physica D.

    Google Scholar 

  9. P. Carles, PhD thesis, l'Effet Piston et les phénomènes thermoacoustiques dans les fluides supercritiques, Institut National Polytechnique de Toulouse (France), 1995.

    Google Scholar 

  10. S. Amiroudine, PhD thesis, Modélisation numérique des phénomènes de transport de chaleur et de masse dans les fluides supercritiques, Institut de Mécanique des Fluides (France), 1995.

    Google Scholar 

  11. L.W. Spradley, S.W. Churchill, J. Fluid Mech. 70(4) (1975) 705–720.

    Article  ADS  Google Scholar 

  12. S. Paolucci, On the filtering of sound from the Navier-Stokes equations, SAND 82-8257 (1982).

    Google Scholar 

  13. P.J. Heinmiller, A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis, T.R.W. Rep. no. 17618-H080-R0-00, Houston, Texas, (1970).

    Google Scholar 

  14. M. Gitterman and V.A. Steinberg, High Temp. 8 (1971) 754.

    Google Scholar 

  15. M. Gitterman and V.A. Steinberg, J. Appl. Math. Mech. 34 (1970) 305.

    Article  Google Scholar 

  16. H. Boukari, R. L. Pego, R. W. Gammon, Calculation of the gravity-induced density profiles near the liquid-vapor critical point, Private Com. (1995).

    Google Scholar 

  17. Fang Zhong and Horst Meyer, Density equilibration near the liquid-vapor critical point of pure fluids” (1995), Pivate Com.

    Google Scholar 

  18. H.E. Stanley, Introduction to Phase transition and Critical Phenomena, Clarendon, Oxford, 1971.

    Google Scholar 

  19. S.V. Patankar and D.P. Spalding, Int. J. Heat and Mass Transfer 15 (1972) 1787–1806.

    Article  MATH  Google Scholar 

  20. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D.C., 1980.

    Google Scholar 

  21. D. Bailly, M. Ermakov, B. Zappoli, Density relaxation in near-critical pure fluid, Phys. Rev. A, in preparation

    Google Scholar 

  22. R.A. Ferrel, IML-2, Spacelab mission, 1994.

    Google Scholar 

  23. Klein and B. Feuerbacher, Phys. Lett. A, 123, (1987) 183.

    Article  ADS  Google Scholar 

  24. B.M. Carpenter, G.M Homsy, High Marangoni number convection in a square cavity: Part 2, Phys. of Fluids A, 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lorenz Ratke Hannes Walter Berndt Feuerbacher

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zappoli, B., Amiroudine, S., Carles, P., Ouazzani, J. (1996). Numerical solutions of thermoacoustic and buoyancy-driven transport in a near critical fluid. In: Ratke, L., Walter, H., Feuerbacher, B. (eds) Materials and Fluids Under low Gravity. Lecture Notes in Physics, vol 464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102510

Download citation

  • DOI: https://doi.org/10.1007/BFb0102510

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60677-2

  • Online ISBN: 978-3-540-49260-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics