Skip to main content

Nickel in F430

  • Chapter
  • First Online:
Bioinorganic Chemistry

Part of the book series: Structure and Bonding ((STRUCTURE,volume 91))

Abstract

The terminal step in methane generation by several methanogenic organisms, of which the best studied is the archaeon Methanobacterium thermoautotrophicum, is catalyzed by the enzyme S-methyl coenzyme M reductase (methylreductase, EC 1.8.-.-). This enzyme contains a macrocyclic tetrapyrrole-derived cofactor, F430, at the active site coordinating Ni(II) in the resting state. A Ni(I) state (Ni1F430) has been proposed as the active form of the cofactor. Extensive mechanistic and spectroscopic studies have been performed on the holoenzyme, isolated cofactor, and various synthetic model compounds. These studies are summarized in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

δ-ALA:

5-aminolevulinic acid

Br-HTP:

7-(bromoheptanonyl)-l-Threonine-O3-phosphate

BrPrSO3 :

3-bromopropanesulfonic acid

CV:

cyclic voltammetry

DMF:

N,N-dimethylformamide

EG:

ethylene glycol

ENDOR:

electron nuclear double resonance

EPR:

electron paramagnetic resonance

ESEEM:

electron spin echo envelope modulation

EXAFS:

extended X-ray absorption fine structure

Fc:

ferrocene

F420 :

deazaflavin cofactor (N-(-N-l-lactyl-g-l-glutamyl)-l-glutamic acid phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin 5′-phosphate)

F430 :

nickel tetrapyrrole pentacarboxylic acid cofactor

F430Me5 :

nickel tetrapyrrole pentamethyl ester cofactor

4,11-dieneN4 :

5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene

HPLC:

high pressure liquid chromatography

HS-CoM:

2-thioethanesulfonic acid

HS-HTP:

7-(mercaptoheptanoyl)-l-threonine-O3-phosphate

MCD:

magnetic circular dichroism

MCR:

methyl-coenzyme M reductase

methyl coenzyme M:

2-(methylthio) ethanesulfonic acid

MFR:

methanofuran (4-[N-(4,5,7-tricarboxyheptanoyl-g-l-glutamyl-g-l-glutamyl-)-p-(β-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan)

MO:

molecular orbital

MPT:

methanopterin (2-amino-4-hydroxy-7-methylpteridine), NHE, normal hydrogen electrode

NMR:

nuclear magnetic resonance

NOE:

nuclear Overhauser effect

OEiBC:

octaethylisobacteriochlorin (tct-2,3,7,8-tetrahydro-2,3,7,8,12,13,17,18-octaethylporphyrin dianion)

RNA:

ribonucleic acid

RR:

resonance Raman effect spectroscopy

SCE:

saturated calomel (Hg2Cl2) reference electrode

TBAP:

tetra-n-butylammonium perchlorate

TEAP:

tetraethylammonium perchlorate

TBAT:

tetra-n-butylammonium tetrafluoroborate

TFE:

2,2,2-trifluoroethanol

THF:

tetrahydrofuran

UV:

ultraviolet

References and Notes

  1. Halcrow MA, Christou G (1994) Chem Rev 94:2421

    CAS  Google Scholar 

  2. Hausinger RP (1994) Sci. Total Environ 148:157

    PubMed  CAS  Google Scholar 

  3. Walsh CT, Orme-Johnson WH (1987) Biochemistry 26:4901

    PubMed  CAS  Google Scholar 

  4. Hausinger RP (1993) Biochemistry of nickel, Plenum, New York

    Google Scholar 

  5. Adams MWW (1990) Biochim. Biophys. Acta 1020:115

    PubMed  CAS  Google Scholar 

  6. Thauer RK, Bonacker LG (1994) In: Chadwick D, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments, John Wiley, Chichester, UK, p 210

    Google Scholar 

  7. Jaun B (1994) Chimia 48:50

    CAS  Google Scholar 

  8. Won H, Olson KD, Summers MF, Wolfe RS (1993) Comments Inorg Chem 15:1

    CAS  Google Scholar 

  9. Jaun B (1993) Met Ions Biol Syst 29:287

    CAS  Google Scholar 

  10. Friedmann HC, Klein A, Thauer RK (1991) Biosynthesis of tetrapyrroles. In: Jordan PM (ed) New Compr Biochem 19, Elsevier, Amsterdam, NL, p. 139

    Google Scholar 

  11. Friedmann HC, Klein A, Thauer RK (1990) FEMS Microbiol Rev 87:339

    CAS  Google Scholar 

  12. Wolfe RS (1985) Trends Biol Sci 396

    Google Scholar 

  13. Thauer RK (1985) Biol Chem Hoppe-Seyler 366:103

    PubMed  CAS  Google Scholar 

  14. Whitman WB (1985) The Bacteria 8:2–720

    Google Scholar 

  15. DiMarco AA, Bobik TA, Wolfe RS (1990) Annu Rev Biochem 59:355

    PubMed  CAS  Google Scholar 

  16. Daniels L, Sparling R, Sprott GD (1984) Biochim Biophys Acta 113

    Google Scholar 

  17. Jones WJ, Nagle DP Jr, Whitman WB (1987) Microbiol Rev 51:135

    PubMed  CAS  Google Scholar 

  18. Schönheit P, Moll J, Thauer RK (1980) Arch Microbiol 127:59

    Google Scholar 

  19. Hartzell PL, Wolfe RS (1986) Syst Appl Microbiol 7:376

    CAS  Google Scholar 

  20. Wolfe RS (1991) Ann Rev Microbiol 45:1

    CAS  Google Scholar 

  21. Ankel-Fuchs D, Hüster R, Mörschel E, Albracht SPJ, Thauer RK (1986) Syst Appl Microbiol 7:383

    CAS  Google Scholar 

  22. Rouviere PE, Wolfe RS (1988) J Biol Chem 263:7913

    PubMed  CAS  Google Scholar 

  23. Wackett LP, Honek JF, Begley TP, Shames SL, Niederhoffer EC, Hausinger RP, Orme-Johnson WH, Walsh CT (1988) In: Lancaster JR Jr (ed) The bioinorganic chemistry of nickel. VCH Publishers, New York

    Google Scholar 

  24. Hartzell PL, Wolfe RS (1986) Proc Natl Acad Sci USA 83:6726

    PubMed  CAS  Google Scholar 

  25. Bobik TA, Wolfe RS (1988) Proc. Natl. Acad Sci USA 85:60

    PubMed  CAS  Google Scholar 

  26. Hedderich R, Thauer RK (1988) FEBS Lett 298:65

    Google Scholar 

  27. Rospert S, Linder D, Ellermann J, Thauer RK (1990) Eur J Biochem 194:871

    PubMed  CAS  Google Scholar 

  28. Brenner MC, Ma L, Johnson MK, Scott RA (1992) Biochim Biophys Acta 1120:160

    PubMed  CAS  Google Scholar 

  29. Jablonski PE, Ferry JG (1991) J Bacteriol 173:248

    Google Scholar 

  30. Rospert S, Breitung J, Ma K, Schwörer B, Zirngibl C, Thauer RK, Linder D, Huber R, Stetter KO (1991) Arch Microbiol 156:49

    PubMed  CAS  Google Scholar 

  31. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geohagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Science (Washington, DC) 273:1058

    CAS  Google Scholar 

  32. Rouvière PE, Wolfe RS (1989) J Bacteriol 171:4556

    PubMed  Google Scholar 

  33. Olson KD, McMahon CW, Wolfe RS (1991) Proc Natl Acad Sci USA 88:4099

    PubMed  CAS  Google Scholar 

  34. Rospert SR, Böcher R, Albracht SPJ, Thauer RK (1991) FEBS Lett 291:371

    PubMed  CAS  Google Scholar 

  35. Ellermann J, Hedderich R, Böcher R, Thauer RK (1988) Eur J Biochem, 172:669

    PubMed  CAS  Google Scholar 

  36. Mayer F, Rohde M, Salzmann M, Jussofie A, Gottschalk G (1988) J. Bacteriol 170:1438

    PubMed  CAS  Google Scholar 

  37. Klein A, Allmansberger R, Bokranz M, Knaub S, Müller B, Muth E (1988) Mol Gen Genet 213:409

    PubMed  CAS  Google Scholar 

  38. Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Eur J Biochem 217:587

    PubMed  CAS  Google Scholar 

  39. Färber G, Keller W, Kratky C, Jaun B, Pfalz A, Spinner C, Kobelt A, Eschenmoser A (1991) Helv Chim Acta 74:697

    Google Scholar 

  40. Won H, Olson KD, Hare DR, Wolfe RS, Kratky C, Summers MF (1992) J Am Chem. Soc. 114:6880

    CAS  Google Scholar 

  41. Gunsalus RP, Wolfe RS (1978) FEMS Microbiol Lett 3:191

    CAS  Google Scholar 

  42. Diekert G, Gilles H-H, Jaenchen R, Thauer RK (1980) FEBS Lett 119:118

    PubMed  CAS  Google Scholar 

  43. Pfaltz A, Kobelt A, Hüster R, Thauer RK (1987) Eur J Biochem 170:459

    PubMed  CAS  Google Scholar 

  44. Warren MJ, Scott AI (1990) Trends Biochem Sci 15:486

    PubMed  Google Scholar 

  45. In addition to these relatively well-known tetrapyrroles, there is a copper-containing tetrapyrrole, turacin (Cu-uroprophyrinogen III), the feather pigment of the turaco bird [46]. A second nickel-containing tetrapyrrole, of unknown function, has also been discovered in very low concentration in the tunicate, Trididemnum solidum, and has thus been called tunichlorin [47]. The degree of unsaturation and type of sidechains in tunichlorin relate it to chlorophyll, rather than to F430

    Google Scholar 

  46. Blumberg WE, Peisach J (1965) J Biol chem 240:870

    PubMed  CAS  Google Scholar 

  47. Bible KC, Buytendorp M, Zierath PD, Rinehart KL (1988) Proc Natl Acad Sci USA, 85: 4582

    PubMed  CAS  Google Scholar 

  48. Hausinger RP, Orme-Johnson WH, Walsh C (1984) Biochemistry 23:801

    CAS  Google Scholar 

  49. Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) J Bacteriol 148:459

    PubMed  CAS  Google Scholar 

  50. Keltjens JT, Hermans JMH, Rijsdijk GJFA, Van der Drift C, Vogels GD (1988) Antonie van Leeuwenhoek 54:207

    PubMed  CAS  Google Scholar 

  51. Gorris LGM, Van der Drift C, Vogels GD (1988) J Microbiol Methods 8:175

    CAS  Google Scholar 

  52. Shiemke AK, Hamilton CL, Scott RA (1988) J Biol Chem 263:5611

    PubMed  CAS  Google Scholar 

  53. Won H, Summers MF, Olson KD, Wolfe RS (1990) J Am Chem Soc 112:2178

    CAS  Google Scholar 

  54. Shiemke AK, Shelnutt JA, Scott RA (1989) J Biol Chem 264:11236

    PubMed  CAS  Google Scholar 

  55. Pfaltz A, Livinston DA, Jaun B, Diekert G, Thauer RK, Eschenmoser A (1985) Helv Chim Acta 68:1338

    CAS  Google Scholar 

  56. Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles H-H, Diekert G, Thauer RK (1982) Helv Chim Acta 65:828

    CAS  Google Scholar 

  57. Livingston DA, Pfaltz A, Schreiber J, Eschenmoser A, Ankel-Fuchs D, Moll J Jaenchen R, Thauer RK (1984) Helv Chim Acta 67:334

    CAS  Google Scholar 

  58. Olson KD, Won H, Wolfe RS, Hare DR, Summers MF (1990) J Am Chem Soc 112: 5884

    CAS  Google Scholar 

  59. Kratky C, Angst C, Johansen JE (1981) Angew Chem, Intl Ed Engl 20:211

    Google Scholar 

  60. Stolzenberg AM, Stershic MT (1987) Inorg Chem 26:3082

    CAS  Google Scholar 

  61. Stolzenberg AM, Stershic MT (1988) J Am Chem Soc, 110:5397

    CAS  Google Scholar 

  62. Stolzenberg AM, Stershic MT (1988) J Am Chem Soc 110:6391

    CAS  Google Scholar 

  63. Renner MW, Forman A, Wu W, Chang CK, Fajer J (1989) J Am Chem Soc 111: 8618

    CAS  Google Scholar 

  64. Renner MW, Furenlid LR, Barkigia KM, Forman A, Shim HK, Simpson DJ, Smith KM, Fajer J (1991) J Am Chem Soc 113:6891

    CAS  Google Scholar 

  65. Renner MW, Furenlid LR, Stolzenberg AM (1995) J Am Chem Soc 117:293

    CAS  Google Scholar 

  66. Suh MP, Kim HK, Kim MJ, Oh KY (1992) Inorg Chem 31:3620

    CAS  Google Scholar 

  67. Suh MP, Lee YJ, Jeong JW (1995) J Chem Soc, Dalton Trans 1577

    Google Scholar 

  68. Furenlid LR, Renner MW, Szalda DJ, Fujita E (1991) J Am Chem Soc 113:883

    CAS  Google Scholar 

  69. Szalda DJ, Fujita E, Sanzenbacher R, Paulus H, Elias H (1994) Inorg Chem 33:5855

    CAS  Google Scholar 

  70. Ram MS, Riordan CG, Ostrander R, Rheingold AL (1995) Inorg Chem 34:5884

    CAS  Google Scholar 

  71. Shiemke AK, Kaplan WA, Hamilton CL, Shelnutt JA, Scott RA (1989) J Biol Chem 264:7276

    PubMed  CAS  Google Scholar 

  72. Furenlid LR, Renner MW, Fajer J (1990) J Am Chem Soc 112:8987

    CAS  Google Scholar 

  73. Furenlid LR, Renner MW, Smith KM, Fajer J (1990) J Am Chem Soc 112:1634

    CAS  Google Scholar 

  74. Wang S, Scott RA. Unpublished observations

    Google Scholar 

  75. The strain-free Ni(II)-N distances calculated by molecular mechanics for octahedral S=1 and square-planar S=0 Ni(II) are 210 and 191 », respectively [76]

    Google Scholar 

  76. Hancock RD, Dobson SM, Evers A, Wade PW, Ngwenya MP, Boeyens JCA, Wainwright KP (1988) J Am Chem Soc 110:2788

    CAS  Google Scholar 

  77. Rospert S, Voges M, Berkessel A, Albracht SPJ, Thauer RK (1992) Eur J Biochem 210:101

    PubMed  CAS  Google Scholar 

  78. Albracht SPJ, Ankel-Fuchs D, van der Zwaan JW, Fontijn RD, Thauer RK (1986) Biochim Biophys Acta 955:50

    Google Scholar 

  79. Albracht SPJ, Ankel-Fuchs D, Böcher R, Ellerman J, Moll J, van der Zwaan JW, Thauer RK (1986) Biochim Biophys Acta 955:86

    Google Scholar 

  80. Krzycki JA, Prince RC (1990) Biochim Biophys Acta 1015:53

    CAS  Google Scholar 

  81. Jaun B, Pfaltz A (1986) J Chem Soc, Chem Commun 1327

    Google Scholar 

  82. Hamilton CL, Ma L, Renner MW, Scott RA (1991). Biochim Biophys Acta 1074:312

    PubMed  CAS  Google Scholar 

  83. Jaun B (1990) Helv Chim Acta 73:2209

    CAS  Google Scholar 

  84. Lovecchio FV, Gore ES, Busch DH (1974) J Am Chem Soc 96:3109

    CAS  Google Scholar 

  85. Lexa D, Momenteau M, Mispelter J, Savéant JM, (1989) Inorg Chem 28:30

    CAS  Google Scholar 

  86. Kadish KM, Franzen MM, Han BC, Araullo-McAdams C, Sazou D (1991) J Am Chem Soc. 113:512

    CAS  Google Scholar 

  87. Holliger C, Pierik AJ, Reijerse EJ, Hagen WR (1993) J Am Chem Soc, 115:5651

    CAS  Google Scholar 

  88. Telser J, Fann Y-C, Renner MW, Fajer J, Wang S, Zhang H, Scott RA, Hoffman BM (1997) J Am Chem Soc 119:733

    CAS  Google Scholar 

  89. Crumbliss AL, McLachlan KL, Siedow JN, Walton SP (1990) Inorg Chim. Acta 170:161

    CAS  Google Scholar 

  90. Eschenmoser A (1986) Ann NY Acad Sci 471:108

    CAS  Google Scholar 

  91. Hamilton CL, Scott RA, Johnson MK (1989) J Biol Chem 264:11605

    PubMed  CAS  Google Scholar 

  92. Cheesman MR, Ankel-Fuchs D, Thauer RK, Thomson AJ (1989) Biochem J 260:613

    PubMed  CAS  Google Scholar 

  93. Shiemke AK, Scott RA, Shelnutt JA (1988) J Am Chem Soc, 110:1645

    CAS  Google Scholar 

  94. Shelnutt JA (1989) J Phys Chem 93:6283

    CAS  Google Scholar 

  95. Crawford BA, Findsen EW, Ondrias MR, Shelnutt JA (1988) Inorg Chem 27:1842

    CAS  Google Scholar 

  96. Shelnutt JA (1987) J Am Chem Soc 109:4169

    CAS  Google Scholar 

  97. Procyk AD, Stolzenberg AM, Bocian DF (1993). Inorg Chem 32:627

    CAS  Google Scholar 

  98. Kratky C, Waditschatka R, Angst C, Johansen JE, Plaquevent JC, Schreiber J, Eschenmoser A (1985) Helv Chim Acta 68:1312

    CAS  Google Scholar 

  99. Zimmer M (1993) J Biomol Struct Dyn 11:203

    PubMed  CAS  Google Scholar 

  100. Zimmer M, Crabtree RH (1990) J Am Chem Soc 112:1062

    CAS  Google Scholar 

  101. Berkessel A, Bolte M, Griesinger C, Huttner G, Neumann T, Schiemenz B, Schwalbe H, Schwenkreis T (1993) Angew Chem, Int Ed Engl 32:1777

    Google Scholar 

  102. Kaplan WA, Suslick KS, Scott RA (1991) J Am Chem Soc 113:9824

    CAS  Google Scholar 

  103. Wackett LP, Honek JF, Begley TP, Wallace V, Orme-Johnson WH, Walsh CT (1987) Biochemistry 26:6012

    PubMed  CAS  Google Scholar 

  104. Ahn Y, Krzycki JA, Floss HG (1991) J Am Chem Soc 113:4700

    CAS  Google Scholar 

  105. Lin SK, Jaun B (1992) Helv chim Acta 75:1478

    CAS  Google Scholar 

  106. Lin SK, Jaun B (1991) Helv Chim Acta 74:1725

    CAS  Google Scholar 

  107. Jaun B, Pfaltz A (1988) J Chem Soc, Chem Commun 293

    Google Scholar 

  108. Berkessel A (1991) Bioorg Chem 19:101

    CAS  Google Scholar 

  109. Drain CM, Sable DB, Corden BB (1990) Inorg Chem 29:1428

    CAS  Google Scholar 

  110. Drain CM, Sable DB, Corden BB (1988) Inorg Chem 27:2396

    CAS  Google Scholar 

  111. Zilbermann I, Golub G, Cohen H, Meyerstein D (1994) Inorg Chim Acta 227:1

    CAS  Google Scholar 

  112. Arai T, Kashitani K, Kondo H, Sakaki S (1994) Bull Chem. Soc Jpn 67:705

    CAS  Google Scholar 

  113. Arai T, Kondo H, Sakaki S (1992) J Chem Soc, Dalton Trans 2753

    Google Scholar 

  114. Lahiri GK, Stolzenberg AM (1993) Inorg Chem 32:4409

    CAS  Google Scholar 

  115. Lahiri GK, Schussel LJ, Stolzenberg AM (1992) Inorg Chem 31:4991

    CAS  Google Scholar 

  116. Helvenston MC, Castro CE (1992) J Am Chem Soc 114:8490

    CAS  Google Scholar 

  117. Zhang Z, Petersen JL, Stolzenberg AM (1996) Inorg Chem 35:4649

    CAS  Google Scholar 

  118. Gantzer CJ, Wackett LP (1991) Environ Sci Technol 25:715

    CAS  Google Scholar 

  119. Krone UE, Laufer K, Thauer RK, Hogenkamp HPC (1989) Biochemistry 28:10061

    PubMed  CAS  Google Scholar 

  120. Holliger C, Schraa G, Stupperich E, Stams AJM, Zehnder AJB (1992) J Bacteriol 174:4427

    PubMed  CAS  Google Scholar 

  121. Holliger C, Kengen SWM, Schraa G, Stams AJM, Zehnder AJB (1992) J Bacteriol 174:4435

    PubMed  CAS  Google Scholar 

  122. Castro CE, Helvenston MC, Belser NO (1994) Environ Toxicol Chem 13:429

    CAS  Google Scholar 

  123. The x-ray crystal structure of MCR has just been determined at 1.45 » resolution by RK Thauer and co-workers (Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK Science, submitted for publication). Among its many important results, this study shows that the Ni(II) ion of F430 is axially coordinated by the thiol group of CoM and by the side chain amide oxygen of Glnα147. The structural information also allowed proposals on MCR mechanism.

    Google Scholar 

  124. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael J. Clarke John B. Goodenough Christian K. Jørgensen David M. P. Mingos Graham A. Palmer Peter J. Sadler Raymond Weiss Robert J. P. Williams

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Verlag

About this chapter

Cite this chapter

Telser, J. (1998). Nickel in F430 . In: Clarke, M.J., et al. Bioinorganic Chemistry. Structure and Bonding, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0103374

Download citation

  • DOI: https://doi.org/10.1007/BFb0103374

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63548-2

  • Online ISBN: 978-3-540-69595-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics