Skip to main content

About the interaction between vorticity and stretching in coherent structures

  • Conference paper
  • First Online:
Turbulence Modeling and Vortex Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 491))

Abstract

The main aim of this article is to explore the relationship of vorticity and stretching in flows having a simple configuration forced by their geometry. Using Taylor’s four rollers mill experiment the stability of a region of pure strain (a 3D hyperbolic flow having a linear stagnation line) is first investigated. In agreement with previous theoretical predictions this flow is shown to be unstable and to give rise to a periodic pattern of alternate vortices aligned in the direction of stretching. It is demonstrated that the vortices which have been amplified by the stretching react on the strain so that the longitudinal velocity gradient is weakened in their core. This effect is also observed in another experiment where a vortex is formed in a cylindrical tank having a rotating bottom and submitted to an axial pumping. This later experiment demonstrates that the reduction of the stretching can be ascribed to the bidimensionalization induced by the vortex rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreotti B., (1997): Studying simple models to investigate the significance of some statistical tools used in turbulence. to appear in Physics of Fluids, March 1997.

    Google Scholar 

  • Aryshev, Y. A., Golovin, V. A. and Ershin, S., A. (1981): Stability of colliding flows. Fluid Dyn. 16(5) 755–759.

    Article  ADS  Google Scholar 

  • Ashurst W. T., Kerstein A. R., Kerr R. M. and Gibson C. H., (1987): Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30, 3243–3253.

    Google Scholar 

  • Cadot, O., Douady, S. and Couder, Y., (1995): Characterization of the low-pressure filaments in a 3-dimensional turbulent shear flow. Phys. Fluids. 7, 1–15.

    Article  Google Scholar 

  • Constantin P. and Procaccia I. (1995): Scaling in fluid turbulence—A geometric theory. Phys. Rev. E 51, 3207–3222.

    Article  ADS  MathSciNet  Google Scholar 

  • Donaldson C. D. and Sullivan R.D., (1960): Behaviors of solutions of Navier Stokes equations for a complete class of three dimensionnal vortices. Proceedings of Heat Transfer and Fluid Mechanics Instabilities, 16–30 Stanford University.

    Google Scholar 

  • Douady S., Couder Y. and Brachet M. E., (1991): Direct observation of the intermittency of intense vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983.

    Article  ADS  Google Scholar 

  • Escudier, M. P., (1984): Vortex breakdown: observations and explanations. Exp. Fluids, 2, 189–196.

    Article  Google Scholar 

  • Fauve S., Laroche C. and Castaing B., (1993): Pressure fluctuations in swirling turbulent flows. J. Phys. II France 3, 271–278.

    Article  Google Scholar 

  • Galanti B., Procaccia I. and Segel D., (1996): Dynamics of vortex lines in Turbulent flows Preprint.

    Google Scholar 

  • Jimenez J., Wray A. A., Saffman P. G. and Rogallo R. S., (1993): The Structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 65–90.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kerr O. and Dold, J. W. (1994): Periodic steady vortices in a stagnation-point flow. Fluid Mech. 276, 307–325.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kerr R. M., (1987): Histograms of helicity and strain in numerical turbulence. Phys. Rev. Lett. 59, 783.

    Article  ADS  Google Scholar 

  • Lagnado, R. R., Phan Thien, N. and Leal, L. G., (1984): The stability of two-dimensional linear flows. Phys. Fluids, 27, 1094–1101.

    Article  MATH  ADS  Google Scholar 

  • Lagnado, R. R. and Leal, L. G., (1990): Visualization of 3-dimensional flow in a 4-roll mill. Exp. Fluids, 9, 25–32.

    Article  Google Scholar 

  • Lin S. J. and Corcos G. M., (1984): The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139.

    Article  MATH  ADS  Google Scholar 

  • Moffat H. K., Kida S. and Okhitani K., (1994): Stretched vortices-The sinews of turbulence-Large Reynolds number asymptotics J. Fluid Mech. 259, 241–264.

    Article  ADS  MathSciNet  Google Scholar 

  • Mory, M. and Yurchenko N., (1993): Vortex generation by suction in a rotating tank. Eur. J. Mech. B / Fluids 12(6), 729–747.

    Google Scholar 

  • Neu J. C., (1984): The dynamics of stretched vortices. J. Fluid Mech. 143, 253–276.

    Article  MATH  ADS  Google Scholar 

  • Nomura K.K. (1995): On the nature of the pressure Hessian in Homogeneous Turbulence. Bulletin of APS 40(12), 1973.

    Google Scholar 

  • Ohkitani, K. (1994): Kinematics of vorticity-Vorticity-strain conjugation in incompressible fluid flows. Phys. Rev. E, 50, 5107–5110.

    Article  ADS  MathSciNet  Google Scholar 

  • Ohkitani, K. and Kishiba, S. (1995): Nonlocal nature of vortex stretching in an inviscid fluid. Phys. Fluids, 7, 411–421.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Raynal F., (1996): Exact relation between spatial mean enstrophy and dissipation in confined incompressible flows. Phys. Fluids, 8, 2242–2245.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Siggia E. D., (1981): Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech., 107, 375.

    Article  MATH  ADS  Google Scholar 

  • Tanaka, M. and S. Kida, (1993): Characterization of vortex tubes and sheets. Phys. Fluids A 5, 2079–2082.

    Article  ADS  Google Scholar 

  • Taylor, G. I., (1934): The formation of emulsions in definable fields of flow. Proc. Roy. Soc. A 146, 501–523.

    Article  ADS  Google Scholar 

  • Taylor, G. I. (1938): Production and dissipation of vorticity in a turbulent fluid. Proc. Roy. Soc. A 164, 15–23.

    Article  ADS  MATH  Google Scholar 

  • Tsinober A., Kit E. and Dracos T., (1992): Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169–192.

    Article  ADS  Google Scholar 

  • Turner, (1966): The constraints imposed on tornado-like vortices by the top and bottom boundary conditions. J. Fluid Mech. 25, 377–386.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

OluÅŸ Boratav Alp Eden Ayse Erzan

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Andreotti, B., Douady, S., Couder, Y. (1997). About the interaction between vorticity and stretching in coherent structures. In: Boratav, O., Eden, A., Erzan, A. (eds) Turbulence Modeling and Vortex Dynamics. Lecture Notes in Physics, vol 491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105032

Download citation

  • DOI: https://doi.org/10.1007/BFb0105032

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63051-7

  • Online ISBN: 978-3-540-69119-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics