Skip to main content

An overview of nonlinear diffraction tomography within the bayesian estimation framework

  • Conference paper
  • First Online:
Inverse Problems of Wave Propagation and Diffraction

Part of the book series: Lecture Notes in Physics ((LNP,volume 486))

Abstract

The Bayesian approach has been proven to give a common estimation structure to existing image reconstruction and restoration methods, in spite of their apparent diversity (Demoment 1989). The goal of this paper is to investigate diffraction tomography within the Bayesian estimation framework. A regularized solution to this ill-posed nonlinear inverse problem is defined as the maximum a posteriori estimate, introducing prior information on the object to reconstruct. Two equivalent formulations of this definition are available which lead to solution of a constrained or an unconstrained optimization problem to compute this solution. Different existing methods for solving this problem — such as Born Iterative Method (Wang and Chew 1989), Newton-Kantorovitch method (Joachimovicz et al. 1991), Distorted Born Iterative method (Chew and Wang 1990) and Modified Gradient method (Kleinman and van den Berg 1992) — are interpreted as algorithms to compute the defined solution. This common point of view allows an objective comparison between these methods, from the standpoint of their convergence properties and the solution they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkeshli S., Lautzenheizer R. G. (1994): An iterative method for inverse scattering problems based on an exact gradient search. Radio Science, vol. 29, no. 4, pp. 1119–1130

    Article  ADS  Google Scholar 

  • Caorsi S., Gragnani G. L., Pastorino M., Peraso A. (1993): Electromagnetic inverse scattering numerical method for non invasive diagnostic of dielectric materials. in 3rd International Conference on Electromagnetics in Aerospace Applications, Torino, Italy

    Google Scholar 

  • Caorsi S., Gragnani G. L., Medicina S., Pastorino M., Pinto A. (1995): A Gibbs random fields-based active electromagnetic method for noninvasive diagnostics in biomedical applications. Radio Science, vol. 30, no. 1, pp. 291–301

    Article  ADS  Google Scholar 

  • Carfantan H. (1996): Approche bayésienne pour un problème inverse non linéaire en imagerie à ondes diffractées. PhD Thesis Université de Paris-Sud Orsay

    Google Scholar 

  • Carfantan H., Mohammad-Djafari A. (1995): A Bayesian approach for nonlinear inverse scattering tomographic imaging. Proc. IEEE ICASSP, Detroit, U.S.A., vol. IV, pp. 2311–2314

    Google Scholar 

  • Carfantan H., Mohammad-Djafari A. (1996): Beyond the Born approximation in inverse scattering with a Bayesian approach 2nd Int. Conf. on Inverse Problems in Engineering, Le Croisic, France

    Google Scholar 

  • Carfantan H., Mohammad-Djafari A., Idier J. (1996): A single site update algorithm for nonlinear diffraction tomography. accepted to IEEE ICASSP 1997, Munich, Germany

    Google Scholar 

  • Chew W. C., Wang Y. M. (1990): Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. IEEE Trans. Medical Imaging, vol. MI-9, pp. 218–225

    Article  Google Scholar 

  • Demoment G. (1989): Image reconstruction and restoration: Overview of common estimation structure and problems. IEEE Trans. Acoust. Speech, Signal Processing, vol ASSP-37, no. 12, pp. 2024–2036

    Article  Google Scholar 

  • Garnero L., Franchois A., Hugonin J.-P., Pichot C., Joachimowicz N. (1991): Microwave imaging — complex permittivity reconstruction by simulated annealing. IEEE Trans. Microwave Theory and Technology, vol. 39, no. 11, pp. 1801–1807

    Article  ADS  Google Scholar 

  • Geman D. (1990): Random fields and inverse problems in imaging. École d'Été de Probabilités de Saint-Flour XVIII-1988, vol. 1427, pp. 117–193, Springer-Verlag, lecture notes in mathematics

    MathSciNet  Google Scholar 

  • Howard A. Q. J., Kretzschmar J. L. (1986): Synthesis of EM geophysical tomographic data. Proc. IEEE, vol. 74, no. 2, pp. 353–360

    Article  Google Scholar 

  • Idier J., Mohammad-Djafari A., Demoment G. (1996): Regularization methods and inverse problems: an information theory standpoint. 2nd Int. Conf. on Inverse Problems in Engineering, Le Croisic, France

    Google Scholar 

  • Joachimovicz N., Pichot C., Hugonin J.-P. (1991): Inverse scattering: An iterative numerical method for electromagnetic imaging. IEEE Trans. Ant. Propag., vol. AP-39, no. 12, pp. 1742–1752

    Article  ADS  Google Scholar 

  • Kleinman R. E., van den Berg P. M. (1992): A modified gradient method for two-dimensional problems in tomography. J. Computational and Applied Mathematics, vol. 42, pp. 17–35

    Article  MATH  Google Scholar 

  • Künsch H. R. (1994): Robust priors for smoothing and image restoration. Annals Institute Statistical Mathematics, vol. 46, no. 1, pp. 1–19

    Article  MATH  Google Scholar 

  • Lobel P., Kleinman R.E., Pichot C., Blanc-Féraud L., Barlaud M. (1996): Conjugate gradient method for solving inverse scattering with experimental data. IEEE Trans. Ant. Propag. Magazine, vol. 38, no. 3, pp. 48–51

    Article  ADS  Google Scholar 

  • Roger A. (1981): Newton-Kantorovitch Algorithm Applied to an Electromagnetic Inverse problem. IEEE Trans. Ant. Propag., vol. AP-29, pp. 232–238

    Article  ADS  MathSciNet  Google Scholar 

  • Sabbagh H. A., Lautzenheiser R. G. (1993): Inverse problems in electromagnetic nondestructive evaluation. International Journal of Applied Electromagnetics in Materials, vol. 3, pp. 235–261

    Google Scholar 

  • Tarantola A. (1987): Inverse problem theory: Methods for data fitting and model parameter estimation. Elsevier Science Publisher

    Google Scholar 

  • van den Berg P. M., Kleinman R. E. (1995): A total variation enhanced modified gradient algorithm for profile reconstruction. Inverse Problems, vol. 11, pp. L5–L10

    Article  MATH  Google Scholar 

  • Wang Y. M., Chew W. C. (1989): An iterative solution of the two-dimensional electromagnetic inverse scattering problem. Int. J. Imaging Systems and Technology, vol. 1, pp. 100–108

    Article  ADS  Google Scholar 

  • Xia J. J., Habashy M., Kong J. A. (1994): Profile inversion in a cylindrically stratified lossy medium. Radio Science, vol. 29, no. 4, pp. 1131–1141

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guy Chavent Pierre C. Sabatier

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Carfantan, H., Mohammad-Djafari, A. (1997). An overview of nonlinear diffraction tomography within the bayesian estimation framework. In: Chavent, G., Sabatier, P.C. (eds) Inverse Problems of Wave Propagation and Diffraction. Lecture Notes in Physics, vol 486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0105764

Download citation

  • DOI: https://doi.org/10.1007/BFb0105764

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62865-1

  • Online ISBN: 978-3-540-68713-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics