Skip to main content

Bosonization in particle physics

  • Conference paper
  • First Online:
Field Theoretical Tools for Polymer and Particle Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 508))

Abstract

Path integral techniques in collective fields are shown to be a useful analytical tool to reformulate a field theory defined in terms of microscopic quark (gluon) degrees of freedom as an effective theory of collective boson (meson) fields. For illustrations, the path integral bosonization approach is applied to derive a (non)linear σ model from a Nambu-Jona-Lasinio (NJL) quark model. The method can be extended to include higher order derivative terms in meson fields or heavy-quark symmetries. It is also approximately applicable to QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review with further references see: Ebert, D., Reinhardt, H., and Volkov, M.K.: Progr. Part. Nucl. Phys. 33 (1994), 1.

    Article  ADS  Google Scholar 

  2. Nambu, Y. and Jona-Lasinio, G.: Phys. Rev. 122 (1961), 345

    Article  ADS  Google Scholar 

  3. ibid 124 (1961), 246.

    Article  ADS  Google Scholar 

  4. Ebert, D. and Volkov, M.K.: Yad. Fiz. 36 (1982), 1265, Z. Phys. C16 (1983), 205.

    Google Scholar 

  5. Ebert, D. and Reinhardt, H.: Nucl. Phys. B271 (1986), 188.

    ADS  Google Scholar 

  6. Bardeen, J., Cooper, L.W., and Schriffer, J.R.: Phys. Rev. 106 (1957), 162.

    Article  ADS  MathSciNet  Google Scholar 

  7. Bogoliubov, N.N.: Zh. Eksp. Teor. Fiz. 34 (1958), 73.

    Google Scholar 

  8. Hubbard, J.: Phys. Rev. Lett. 3 (1959), 77.

    Article  ADS  Google Scholar 

  9. Stratonovich, R.L.: Sov. Phys. Dokl. 2 (1957), 416.

    MATH  ADS  Google Scholar 

  10. Ebert, D. and Pervushin, V.N.: Teor. Mat. Fiz. 36 (1978), 313

    Google Scholar 

  11. Ebert, D. and Kaschluhn, L.: Nucl. Phys. B355 (1991), 123.

    Article  ADS  Google Scholar 

  12. Ebert, D., Reinhardt, H., and Pervushin, V.N.: Sov. J. Part. Nucl. 10 (1979), 444.

    MathSciNet  Google Scholar 

  13. Kleinert, H.: Phys. Lett. B62 (1976), 77 and Erice Lectures (1978).

    ADS  Google Scholar 

  14. Cahill, R.T., Praschifka, J., and Roberts, D.: Phys. Rev. D36 (1987), 209.

    ADS  Google Scholar 

  15. Efimov, G. and Nedelko, S.: Phys. Rev. D51 (1995) 176.

    ADS  Google Scholar 

  16. Ebert, D. and Reinhardt, H.: Teor. Mat. Fiz. 41 (1979), 139.

    Google Scholar 

  17. Azakov, S.I.: “Two-dimensional Hubbard Model and Heisenberg Antiferromagnet” (in Lecture Notes, IASBS, Zanjan (1997)).

    Google Scholar 

  18. Wolff, U.: Nucl. Phys. B225 (1983), 391.

    Article  ADS  Google Scholar 

  19. Mandelstam, S.: Phys. Rev. D11 (1975), 3026

    ADS  MathSciNet  Google Scholar 

  20. see also: Coleman, S.: Phys. Rev. D11 (1975), 2088

    ADS  Google Scholar 

  21. Luther, A. and Peschel, I.: Phys. Rev. B9 (1974), 2911.

    ADS  Google Scholar 

  22. Witten, E.: Comm. Math. Phys. 92 (1984), 455.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Date, G.D., Frishman, Y., and Sonnenschein, J.: Nucl. Phys. B283 (1987), 365

    Article  ADS  Google Scholar 

  24. Frishman, Y. and Sonnenschein, J.: Nucl. Phys. B294 (1987), 801.

    Article  ADS  Google Scholar 

  25. Weinberg, S.: Phys. Rev. Lett. 18 (1967), 188.

    Article  ADS  Google Scholar 

  26. Coleman, S., Wess, J., and Zumino, B.: Phys. Rev. 177 (1969), 2239

    Article  ADS  Google Scholar 

  27. Callan, G.G. et al.: Phys. Rev. 177 (1969), 2247.

    Article  ADS  Google Scholar 

  28. Ebert, D. and Volkov, M.K.: Forschr. Phys. 29 (1981), 35.

    Article  Google Scholar 

  29. Gasser, J. and Leutwyler, H.: Nucl. Phys. B250 (1985), 465, 517, 539.

    Article  ADS  Google Scholar 

  30. Ebert, D., Bel'kov, A.A., Lanyov, A.V., and Schaale, A.: Int. J. Mod. Phys. A8 (1993), 1313.

    ADS  Google Scholar 

  31. Ebert, D., Feldmann, T., Friedrich, R., and Reinhardt, H.: Nucl. Phys. B434 (1995), 619

    Article  ADS  Google Scholar 

  32. Ebert, D., Feldmann, T., and Reinhardt, H.: Phys. Lett. B388 (1996), 154.

    ADS  Google Scholar 

  33. Bardeen, W.A. and Hill, C.T.: Phys. Rev. D49 (1993), 409

    ADS  Google Scholar 

  34. Novak, M.A., Rho, M., and Zahed, I.: Phys. Rev. D48 (1993), 4370.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hildegard Meyer-Ortmanns Andreas Klümper

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this paper

Cite this paper

Ebert, D. (1998). Bosonization in particle physics. In: Meyer-Ortmanns, H., Klümper, A. (eds) Field Theoretical Tools for Polymer and Particle Physics. Lecture Notes in Physics, vol 508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0106879

Download citation

  • DOI: https://doi.org/10.1007/BFb0106879

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64308-1

  • Online ISBN: 978-3-540-69747-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics