Skip to main content

Recent advances in the growth, doping and characterization of III–V nitride thin films

  • Chapter
  • First Online:
Advances in Solid State Physics 35

Abstract

Boron nitride thin films have been grown on the (100) surfaces of Si and diamond via ion beam assisted deposition (IBAD) using electron beam evaporation of B in tandem with N and Ar ion bombardment within the ranges of substrate temperature and ion flux of 200–700°C and 0.20–0.30 mA/cm2, respectively. Fourier-transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) revealed a growth sequence of amorphous (a-BN), hexagonal (h-BN) and cubic (c-BN) layers under most conditions. This sequence is attributed primarily to increasing biaxial compressive stress with film thickness due to ion bombardment and some interstitial Ar incorporation. A minimum substrate temperature of 200–300° C is required for nucleation and growth of single phase c-BN by this technique. The initial stage of AlN film growth on α(6H)-SiC(0001) substrates by plasma-assisted, gas source molecular beam epitaxy has been investigated in terms of growth mode and interface defects. Essentially atomically flat AlN surfaces, indicative of two-dimensional growth, were obtained using on-axis substrates. Island-like features were observed on the vicinal surfaces. The coalescence of latter features gave rise to double positioning boundaries as a result of the misalignment of the Si/C bilayer steps with the Al/N bilayers in the growing films. The quality of the thicker AlN films was strongly influenced by the concentration of these boundaries. Monocrystalline GaN and AlxGa1−x N(0001) (0≤x≤1) films, void of oriented domain structures and associated low-angle grain boundaries and with smooth surface morphologies, have been grown via OMVPE on high-temperature monocrystalline AlN(0001) buffer layers, previously deposited on vicinal α(6H)−SiC(0001) wafers, using TEG, TEA and ammonia in a cold-wall, vertical, pancake-style reactor. Abrupt heterojunctions were demonstrated. The PL spectrum of the pure GaN showed strong near band-edge emissions with a FWHM value of 4 meV. Cathodoluminescence spectra of AlxGa1−x N films for x<0.5 also showed intense near band-edge emission. The dislocation density within the first 0.5 μm was ≈1×109 cm−2; it decreased substantially with increasing film thickness. Double-crystal XRC measurements indicated a FWHM value of 66 arc sec for the pure GaN(0004) reflection; the value of this parameter increased with increasing values of x. Controlled n-type Si-doping of pure GaN has been achieved for net carrier concentrations ranging from approximately 1×1017 cm−3 to 1×1020 cm−3. As-deposited Si-doped Al0.75Ga0.25N exhibited negative electron affinity. Mg-doped, p-type GaN was achieved with n An D≈3×1017 cm−3, ρ≈7 Ω·cm and μ≈3 cm2/V·s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Vel, G. Demazeau, and J. Etourneau, Materials Science and Engineering B 10, 149 (1991).

    Article  Google Scholar 

  2. K. Era, O. Mishima, Y. Wada, J. Tanaka, and S. Yamaoka, in Electroluminescence, edited by S. Shionoya and H. Kobayashi, (Springer Proceedings in Physics 38, New York, 1989) pp. 386–392.

    Google Scholar 

  3. R. H. Wentorf, Jr., J. Chem. Phys. 26, 956 (1957).

    Article  ADS  Google Scholar 

  4. V. N. Gashtold et al., Elektronnaya Tekhnika 12, 58 (1970).

    Google Scholar 

  5. K. Inagawa, K. Watanabe, H. Ohsone, K. Saitoh, and A. Itoh, J. Vac. Sci. Technol. A 5, 2696 (1987).

    Article  ADS  Google Scholar 

  6. D. J. Kester and R. Messier, in Phase Formation and Modification by Beam-Solid Interactions, edited by G. S. Was, L. E. Rehn and D. Follstaedt (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) pp. 721–727.

    Google Scholar 

  7. T. Wada and N. Yamashita, J. Vac. Soc. Technol. A 10, 515 (1992).

    Article  ADS  Google Scholar 

  8. K. Bewilogua, J. Buth, H. Hübsch, and M. Grischke, Diamond and Related Materials, 2, 1206 (1993).

    Article  Google Scholar 

  9. M. Murakawa, S. Watanabe, and S. Miyake, Diamond Films and Technol. 1, 55 (1991).

    Google Scholar 

  10. G. L. Doll, J. A. Sell, C. A. Taylor II, and R. Clarke, Phys. Rev. B, 43, 6816 (1991).

    Article  ADS  Google Scholar 

  11. T. A. Friedmann, K. F. McCarty, and E. J. Klaus, Appl. Phys. Lett. 61, 2406 (1992).

    Article  ADS  Google Scholar 

  12. Y. Osaka, M. Okamoto, and Y. Utsumi, in Low Energy Ion Beam and Plasma Modification of Materials edited by J. M. E. Harper, K. Miyake, J. R. McNeil and S. M. Gorbatkin (Mater. Res. Soc. Symp. Proc. 223, Pittsburgh, PA, 1991) pp. 81–87.

    Google Scholar 

  13. H. Saitoh and W. Yarborough, Applied Physics Letters, 58, 2228 (1991).

    Article  ADS  Google Scholar 

  14. D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis and R. E. Collins, Diamond Relat. Mater. 2, 970 (1993).

    Article  Google Scholar 

  15. D. R. McKenzie, J. Vac. Sci. Technol. B 11, 1928 (1993).

    Article  Google Scholar 

  16. D. J. Kester, K. S. Ailey, R. F. Davis, and K. L. More, J. Mater. Res. 8, 1213 (1993).

    Article  ADS  Google Scholar 

  17. D. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).

    Article  ADS  Google Scholar 

  18. N. Tanabe, T. Hayashi, and M. Iwaki, Diamond and Related Materials 1, 151 (1992).

    Article  Google Scholar 

  19. H. Windischmann, J. Vac. Sci. Technol. A 7, 2247 (1989).

    Article  ADS  Google Scholar 

  20. H. Windischmann, J. Appl. Phys. 62, 1800 (1987).

    Article  ADS  Google Scholar 

  21. H. Windischmann, J. Vac. Sci. Technol. A 9, 2431 (1991).

    Article  ADS  Google Scholar 

  22. R. A. Roy and D. S. Yee, in Handbook of Ion Beam Processing Technology, edited by J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman, (Noyes, Park Ridge, NJ, 1989) pp. 194–217.

    Google Scholar 

  23. S. Yoshida, S. Misawa, and S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983).

    Article  Google Scholar 

  24. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).

    Article  ADS  Google Scholar 

  25. M. E. Lin, S. Strite, A. Agarwal, A. Salvador, G. L. Zhou, N. Teraguchi, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 62, 702 (1993).

    Article  ADS  Google Scholar 

  26. Z. Sitar, M. J. Paisley, B. Yan, J. Ruan, W. J. Choyke, and R. F. Davis, J. Vac. Sci. Technol. B8, 316 (1990).

    Article  Google Scholar 

  27. G. A. Slack and S. F. Bartram, J. Appl. Phys 46, 89 (1975).

    Article  ADS  Google Scholar 

  28. A. Taylor and R. M. Jones, in Silicon Carbide, A High Temperature Semiconductor, edited by J. R. O'Conor and J. Smittens, Pergamon Press, NY, 1960, pp 147–154.

    Google Scholar 

  29. H. P. Maruska and J. J. Tietjien, Appl. Phys. Lett. 15, 327 (1969).

    Article  ADS  Google Scholar 

  30. A. Seifert, A. Berger, and W. Muller, J. Am. Ceram. Soc. 75, 873 (1992).

    Article  Google Scholar 

  31. S. Hagege, Y. Ishida, and S. Tanaka, J. Phys. 45, C5–189 (1988).

    Google Scholar 

  32. M. F. Denanot and J. Rabier, J. Mater. Sci. 24, 1594 (1989).

    Article  ADS  Google Scholar 

  33. A. D. Westwood and M. R. Notis, Mater. Res. Soc. Symp. Proc. 167, 295 (1989).

    Google Scholar 

  34. A. D. Westwood and M. R. Notis, J. Am. Ceram. Soc. 74, 1226 (1991).

    Article  Google Scholar 

  35. M. R. McCartney, R. A. Youngman and R. G. Teller, Ultramicroscopy 40, 291 (1992).

    Article  Google Scholar 

  36. J. H. Harris, R. A. Youngman, and R. G. Teller, J. Mater. Res. 5, 1763 (1990).

    Article  ADS  Google Scholar 

  37. T. L. Chu, D. W. Ing, and A. J. Noreika, Solid-State Electron. 10, 1023 (1967).

    Article  ADS  Google Scholar 

  38. M. Morita, S. Isogai, N. Shimizu, K. Tsubouchi, and N. Mikoshiba, Jpn. J. Appl. Phys. 20, L173 (1981).

    Article  ADS  Google Scholar 

  39. S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, and A. Itoh, J. Vac. Sci. Technol. 16, 990 (1979).

    Article  ADS  Google Scholar 

  40. Z. Sitar, M. J. Paisley, B. Yan, R. F. Davis, J. Ruan, and W. J. Choyke, Thin Solid Films 200, 311 (1991).

    Article  ADS  Google Scholar 

  41. W. J. Meng, J. Heremans, and Y. T. Cheng, Appl. Phys. Lett. 59, 2097 (1991).

    Article  ADS  Google Scholar 

  42. L. B. Rowland, R. S. Kern, S. Tanaka, and R. F. Davis, J. Mater. Res. 8, 2310 (1993).

    Article  ADS  Google Scholar 

  43. S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 65, 2851 (1994).

    Article  ADS  Google Scholar 

  44. D. R. Hamann, Phys. Rev. Lett. 60, 313 (1988).

    Article  ADS  Google Scholar 

  45. R. Ghez and S. S. Iyer, IBM J. Res. Develop. 32, 804 (1988).

    Article  Google Scholar 

  46. S. Tanaka, R. S. Kern, J. Bentley, and R. F. Davis, paper in progress.

    Google Scholar 

  47. R. F. Davis, Physica B 185, 1 (1993).

    Article  ADS  Google Scholar 

  48. M. A. Khan, J. N. Kuznia, D. T. Olson and R. Kaplan, J. Appl. Phys., 73, 3108 (1993).

    Article  ADS  Google Scholar 

  49. J. N. Kuznia, M. A. Khan, D. T. Olson, R. Kaplan and J. Freitas, J. Appl. Phys., 73, 4700 (1993).

    Article  ADS  Google Scholar 

  50. W. Qian, M. Skowronski, M. De Graef, K. Doverspike, L. B. Rowland and D. K. Gaskill, Appl. Phys. Lett., 66, 1252 (1995).

    Article  ADS  Google Scholar 

  51. H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Sawaki, Thin Solid Films, 163, 415 (1988).

    Article  ADS  Google Scholar 

  52. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, 98, 209 (1989).

    Article  ADS  Google Scholar 

  53. K. Hiramatsu, S. Itoh, H. Amano, I. Akaski, N. Kuwano, T. Shiraishi and K. Oki, J. Crystal Growth, 115, 628 (1991).

    Article  ADS  Google Scholar 

  54. S. Nakamura, Jpn. J. Appl. Phys., 30, L1705 (1991).

    Article  ADS  Google Scholar 

  55. A. A. Chernov, Modern Crystallography III: Crystall Growth (Springer, Berlin, 1984) p. 283.

    Google Scholar 

  56. T. W. Weeks, Jr., M. D. Bremser, K. S. Ailey, E. Carlson, W. G. Perry, L. L. Smith, J. A. Freitas, Jr., R. F. Davis, Second Nitride Workshop, St. Louis, MO, October 17–18 (1994).

    Google Scholar 

  57. T. W. Weeks, Jr., D. W. Kum, E. Carlson, W. G. Perry, K. S. Ailey and R. F. Davis, Transactions of the Second International High Temperature Electronics Conference, Vol. II, Charlotte, NC USA, June 5–10 (1994) p. 209.

    Google Scholar 

  58. H. Amano, M. Kitoh, K. Hiramatsu and I. Akasaki, Inst. Phys. Conf. Ser., 106, 725 (1989).

    Google Scholar 

  59. S. Nakamura, T. Mukai and M. Senoh, Jpn. J. Appl. Phys., 30, L1998 (1991).

    Article  ADS  Google Scholar 

  60. S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys., 31, L139 (1992).

    Article  ADS  Google Scholar 

  61. H. Amano, T. Tanaka, Y. Kunii, K. Kato, S. T. Kim and I. Akasaki, Appl. Phys. Lett., 64 (1994) 1377.

    Article  ADS  Google Scholar 

  62. M. R. H. Khan, Y. Koide, H. Itoh, N. Sawaki and I. Akasaki, Solid State Commun., 60 (1986) 509. *** DIRECT SUPPORT *** A00AX035 00002

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Davis, R.F. et al. (1996). Recent advances in the growth, doping and characterization of III–V nitride thin films. In: Helbig, R. (eds) Advances in Solid State Physics 35. Advances in Solid State Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107537

Download citation

  • DOI: https://doi.org/10.1007/BFb0107537

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08043-3

  • Online ISBN: 978-3-540-75334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics