Skip to main content

The use of effective medium theories in optical spectroscopy

  • Chapter
  • First Online:
Advances in Solid State Physics 33

Part of the book series: Advances in Solid State Physics ((ASSP,volume 33))

Abstract

For the optical analysis of heterogeneous materials the microtopology of the samples plays an important role. In the long wavelength limit (i.e. light wavelengths much larger than the typical size of the inhomogeneities) effective medium theories give the desired connection between the component properties and the average ‘effective’ optical behaviour. On the basis of the general Bergman representation for effective dielectric functions we discuss simple and advanced effective medium concepts and show how they can successfully be used in optical spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media. Vol. 1+2, Academic Press, New York and London, 1978

    Google Scholar 

  2. G. Mie, Ann. Phys. 25 (1908), 377

    Article  Google Scholar 

  3. M. Kerker, The scattering of light and other electromagnetic radiation. Academic Press, New York, London, 1969

    Google Scholar 

  4. S. Chandrasekhar, Radiative Transfer. Oxford Univ. Press, New York, London, Dover 1960

    Google Scholar 

  5. W. Theiß, Doctoral Thesis, RWTH Aachen 1990

    Google Scholar 

  6. M.P. van Albada, A. Lagendijk, Phys. Rev. Lett. 55 (1985), 2692

    Article  ADS  Google Scholar 

  7. J.C. Maxwell Garnett, Philos. Trans. R. Soc. London 303 (1904), 385

    Article  ADS  Google Scholar 

  8. D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24 (1935), 636

    ADS  Google Scholar 

  9. H. Looyenga, Physica 31 (1965), 401

    Article  ADS  Google Scholar 

  10. P. Marquardt, G. Nimtz, Phys. Rev. B 40, No. 11 (1989), 7996

    Article  ADS  Google Scholar 

  11. Landau-Lifschitz, Lehrbuch der theoretischen Physik, Band VIII: Elektrodynamik der Kontinua Berlin: Akademie-Verlag 1967, 55

    Google Scholar 

  12. P. Sheng, Phys. Rev. Lett. 45, No. 1 (1980), 60

    Article  ADS  Google Scholar 

  13. A. Wachniewski, H.B. McClung, Phys. Rev. B 33, No. 12 (1986), 8053

    Article  ADS  Google Scholar 

  14. J. Lafait, S. Berthier, L.E. Regalado, SPIE Vol. 652 (1986), 184

    ADS  Google Scholar 

  15. R.W. Cohen, G.D. Cody, M.D. Coutts, B. Abeles, Phys. Rev. B 8 (1973), 3689

    Article  ADS  Google Scholar 

  16. R. Clasen, Habilitationsschrift, RWTH Aachen, 1991

    Google Scholar 

  17. M. Hornfeck, W. Theiß, R. Clasen, J. of Noncryst. Solids 145 (1992), 154

    Article  ADS  Google Scholar 

  18. R. Clasen, M. Hornfeck, W. Theiß, SPIE Vol. 1513 (1991), 243

    Article  ADS  Google Scholar 

  19. D. Bergman, Bulk physical properties of composite media. Les methodes de l'homogeneisation, Edition Eyrolles (1985)

    Google Scholar 

  20. D. Bergman, Physics Reports C 43 (1978), 377

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Hinsen, B.U. Felderhof, J. Chem. Phys. 94 (1991), 5655

    Article  ADS  Google Scholar 

  22. B. Cichocki, B.U. Felderhof, J. Chem. Phys. 90 (1989), 4960

    Article  ADS  Google Scholar 

  23. M. Evenschor, P. Grosse, W. Theiß, Vibrational Spectroscopy 1 (1990), 173

    Article  Google Scholar 

  24. G.W. Milton, J. Appl. Phys. 52 (1981), No. 8, 5286

    Article  ADS  Google Scholar 

  25. G.W. Milton, J. Appl. Phys. 52 (1981), No. 8, 5294

    Article  ADS  Google Scholar 

  26. B.U. Felderhof, Physica 126a (1984), 430

    ADS  MathSciNet  Google Scholar 

  27. J. Sturm, P. Grosse, W. Theiß, Z. Phys. D 20 (1991), 341

    Article  ADS  Google Scholar 

  28. J. Sturm, P. Grosse, W. Theiß, Z. Phys. B 83 (1991), 361

    Article  ADS  Google Scholar 

  29. T. Eickhoff, P. Grosse, S. Henkel, W. Theiß, Z. Phys. B 88 (1992), 17

    Article  ADS  Google Scholar 

  30. P. Grosse in Festkörperprobleme/Advances in Solid State Physics, Vol. 31, ed. by U. Rössler (Vieweg, Braunschweig 1991), 77

    Google Scholar 

  31. J. Sturm, P. Grosse, S. Morley, W. Theiß, Z. Phys. D, to be published

    Google Scholar 

  32. J. Sturm, Doctoral Thesis, RWTH Aachen 1993

    Google Scholar 

  33. E. Gorges, P. Grosse, J. Sturm, W. Theiß, in preparation

    Google Scholar 

  34. E. Gorges, private communication

    Google Scholar 

  35. R. Fuchs, Phys. Rev. B 11, No. 4 (1975), 1732

    Article  ADS  Google Scholar 

  36. F. Claro, R. Fuchs, Phys. Rev. B 33, No. 12 (1986), 7956

    Article  ADS  Google Scholar 

  37. P. Grosse, private communication

    Google Scholar 

  38. L.T. Canham, Appl. Phys. Lett. 57 (1990), 1046

    Article  ADS  Google Scholar 

  39. V. Lehmann, U. Gösele, Appl. Phys. Lett. 58 (1991), 856

    Article  ADS  Google Scholar 

  40. W. Theiß, P. Grosse, H. Münder, H. Lüth, R. Herino, M. Ligeon, Proc. of the MRS fall meeting in Boston (1992), Symposium F, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Theiß, W. (1994). The use of effective medium theories in optical spectroscopy. In: Helbig, R. (eds) Advances in Solid State Physics 33. Advances in Solid State Physics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107886

Download citation

  • DOI: https://doi.org/10.1007/BFb0107886

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08041-9

  • Online ISBN: 978-3-540-75339-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics