Skip to main content

Relaxation processes of hot holes in germanium and GaAs studied by picosecond infrared spectroscopy

  • Chapter
  • First Online:
Festkörperprobleme 32

Part of the book series: Advances in Solid State Physics ((ASSP,volume 32))

  • 54 Accesses

Abstract

Relaxation processes of holes in p-type Ge and GaAs are investigated with picosecond infrared pulses in the wavelength range from 0.8 to 12 μm. The transient inter-valence band absorption of Ge studied in spectrally and temporally resolved measurements reveals subpicosecond carrier-carrier and inter-valence band scattering of the excited holes, followed by the picosecond cooling of hot heavy holes via emission of optical phonons. Photogenerated non-equilibrium split-off holes give rise to a short-lived population inversion between the split-off and the light hole band, resulting in a transient gain around 260 meV. In p-type GaAs, ultrafast recombination of holes with shallow acceptors is directly observed for the first time. Carrier capture occurs on a time scale of several tens of picoseconds, following a non-exponential kinetics. Emission of longitudinal-optical phonons by free holes is found to be the dominant mechanism of recombination, directly populating the acceptor ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Shah, Solid State Electron. 32, 1051 (1989), and references therein

    Article  ADS  Google Scholar 

  2. E.O. Göbel, Adv. Solid State Phys. 30, 269 (1990), and references therein

    Article  Google Scholar 

  3. J.A. Kash, and J.C. Tsang, in: Light Scattering in Solids VI, Topics in Appl. Phys. Vol. 68, ed. M. Cardona, G. Güntherodt (Berlin: Springer 1991) p. 423

    Google Scholar 

  4. D.J. Erskine, A.J. Taylor, and C.L. Tang, Appl. Phys. Lett. 45, 54 (1984)

    Article  ADS  Google Scholar 

  5. W.Z. Lin, R.W. Schoenlein, J.G. Fujimoto, and E.P. Ippen, IEEE J. Quant. Electron. 24, 267 (1988)

    Article  ADS  Google Scholar 

  6. T. Elsaesser, J. Shah, L. Rota, and P. Lugli, Phys Rev. Lett. 66, 1757 (1991)

    Article  ADS  Google Scholar 

  7. W.G. Spitzer, and J.M. Whelan, Phys. Rev. 114, 59 (1959)

    Article  ADS  Google Scholar 

  8. V.L. Gurevich, I.G. Lang, and Yu. A. Firsov, Sov. Phys. Solid State 4, 918 (1962)

    Google Scholar 

  9. W. Kaiser, R.J. Collins, and H.Y. Fan, Phys. Rev. 91, 1380 (1953)

    Article  ADS  Google Scholar 

  10. R. Braunstein, and E.O. Kane, J. Phys. Chem. Solids 23, 1423 (1962)

    Article  ADS  Google Scholar 

  11. L.C. West, and S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)

    Article  ADS  Google Scholar 

  12. T. Elsaesser, R.J. Bäuerle, and W. Kaiser, Phys. Rev. B 40, 2976 (1989)

    Article  ADS  Google Scholar 

  13. M. Woerner, T. Elsaesser, and W. Kaiser, Phys. Rev. B 41, 5463 (1990)

    Article  ADS  Google Scholar 

  14. R.J. Bäuerle, T. Elsaesser, H. Lobentanzer, W. Stolz, and K. Ploog, Phys. Rev. B 40, 10002 (1989)

    Article  Google Scholar 

  15. A. Seilmeier, H.J. Hübner, G. Abstreiter, G. Weimann, and W. Schlapp, Phys. Rev. Lett. 59, 1345 (1987)

    Article  ADS  Google Scholar 

  16. L.F. Mollenauer, and R.H. Stolen, Opt. Lett. 9, 13 (1984)

    Article  ADS  Google Scholar 

  17. E.P. Ippen, H.A. Haus, and L.Y. Liu, J. Opt. Soc. Am. B 7, 1221 (1989)

    Google Scholar 

  18. M.N. Islam, E.R. Sunderman, C.E. Soccolich, I. Bar-Joseph, N. Sauer, T.Y. Chang, and B.I. Miller, IEEE J. Quant. Electron. 25, 2454 (1989).

    Article  ADS  Google Scholar 

  19. T. Elsaesser, H.J. Polland, A. Seilmeier, and W. Kaiser, IEEE J. Quant. Electron. 20, 191 (1984)

    Article  ADS  Google Scholar 

  20. H. Roskos, S. Opitz, A. Seilmeier, and W. Kaiser, IEEE J. Quant. Electron. 22, 697 (1986)

    Article  ADS  Google Scholar 

  21. T. Elsaesser, A. Seilmeier, W. Kaiser, P. Koidl, and C. Brandt, Appl. Phys. Lett. 44, 383 (1984)

    Article  ADS  Google Scholar 

  22. T. Elsaesser, H. Lobentanzer, and A. Seilmeier, Opt. Commun. 53, 355 (1985)

    Article  ADS  Google Scholar 

  23. H.J. Bakker, J.T.M. Kennis, H.J. Kop, and A. Lagendijk, Opt. Commun. 86, 58 (1991)

    Article  ADS  Google Scholar 

  24. D.C. Edelstein, E.S. Wachman, and C.L. Tang, Appl. Phys. Lett. 54, 1728 (1989)

    Article  ADS  Google Scholar 

  25. R. Laenen, H. Graener, and A. Laubereau, Opt. Lett. 15, 971 (1990)

    Article  ADS  Google Scholar 

  26. D.S. Moore, and S.C. Schmidt, Opt. Lett. 12, 480 (1987)

    Article  ADS  Google Scholar 

  27. T. Elsaesser, and M.C. Nuss, Opt. Lett. 16, 411 (1991)

    Article  ADS  Google Scholar 

  28. J. Hebling, and J. Kuhl, Opt. Lett. 14, 278 (1989)

    Article  ADS  Google Scholar 

  29. A.H. Kahn, Phys. Rev. 97, 1647 (1955)

    Article  ADS  Google Scholar 

  30. M.A. Vasil'eva, L.E. Vorob'ev, V.I. Stafeev, Sov. Phys. Semicond. 1, 21 (1967)

    Google Scholar 

  31. E.O. Kane, J. Phys. Chem. Solids 1, 82 (1956)

    Article  ADS  Google Scholar 

  32. W. Fawcett, Proc. Phys. Soc. London 85, 931 (1965)

    Article  ADS  Google Scholar 

  33. M. Woerner, T. Elsaesser, and W. Kaiser, Appl. Phys. Lett. 59, 2004 (1991)

    Article  ADS  Google Scholar 

  34. M. Woerner, T. Elsaesser, and W. Kaiser, Phys. Rev. B 45, in press

    Google Scholar 

  35. L. Reggiani, J. Phys. Chem. Solids 37, 293 (1976)

    Article  ADS  Google Scholar 

  36. M. Lax, Phys. Rev. 119, 1502 (1960)

    Article  ADS  Google Scholar 

  37. For a review see: L. Reggiani, and V. Mitin, Rivista del Nuovo Cimento 12, No. 11, 1 (1989)

    Article  Google Scholar 

  38. L. Reggiani, L. Varani, V. Mitin, and C. VanVliet, Phys. Rev. Lett. 63, 1094 (1989)

    Article  ADS  Google Scholar 

  39. For a review see: V.N. Abakumov, V.I. Perel, I.N. Yassievich, Sov. Phys. Semicond. 12, 1 (1978)

    Google Scholar 

  40. S.H. Koenig, Phys. Rev. 110, 986 (1958)

    Article  ADS  Google Scholar 

  41. E.E. Godik, Yu.A. Kuritsyn, and V.P. Sinis, Sov. Phys. Semicond. 12, 51 (1978)

    Google Scholar 

  42. D. Bimberg, H. Münzel, A. Steckenborn, and J. Christen, Phys. Rev. B 31, 7788 (1985)

    Article  ADS  Google Scholar 

  43. R.F. Kirkman, R. Stradling, and P.J. Lin-Chung, J. Phys. C 11, 419 (1978)

    Article  ADS  Google Scholar 

  44. W.P. Dumke, Phys. Rev. 132, 1998 (1963).

    Article  ADS  Google Scholar 

  45. X.Q. Zhou, K. Leo, and H. Kurz, Phys. Rev. B 45, 3886 (1992).

    Article  ADS  Google Scholar 

  46. A. Baldereschi, and N.O. Lipari, Phys. Rev. B 8, 2697 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Elsaesser, T., Lohner, A., Woerner, M. (1992). Relaxation processes of hot holes in germanium and GaAs studied by picosecond infrared spectroscopy. In: Festkörperprobleme 32. Advances in Solid State Physics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108625

Download citation

  • DOI: https://doi.org/10.1007/BFb0108625

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08040-2

  • Online ISBN: 978-3-540-75341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics