Skip to main content

Flatness-based control of the separately excited DC drive

  • Conference paper
  • First Online:
Nonlinear control in the Year 2000

Abstract

Due to the flatness of the separately excited DC drive a novel control scheme that achieves copper loss minimization can be designed. It makes use of an on-line replanification of desired trajectories by using the information of a fast converging load torque observer. Simulation results show the performance of the proposed control scheme.

The work of V.H. was financially supported by the Nonlinear Control Network (NCN) and by the German Academic Exchange Service (DAAD). The work of P.K. was financially supported by the Nonlinear Control Network (NCN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiasson J. (1994) Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans Control Systems Technology 2:35–42

    Article  Google Scholar 

  2. Egami T., Tsuchiya T. (1986) Efficiency-optimized speed-control system based on improved optimal regulator theory. IEEE Trans Ind Electron 33:114–125

    Article  Google Scholar 

  3. Egami T., Tsuchiya T. (1987) Efficiency-optimized speed control system with feed-forward compensation. IEEE Trans Ind Electron 34:216–226

    Article  Google Scholar 

  4. Egami T., Wang J., Tsuchiya T. (1985) Efficiency-optimized speed control system synthesis method based on improved optimal regulator theory — application to separately exited DC motor system. IEEE Trans Ind Electron 32:372–380

    Article  Google Scholar 

  5. Famouri P., Cooley W. (1994) Design of DC traction motor drives for high efficiency under accelerating conditions. IEEE Trans Ind Appl 30:1134–1138

    Article  Google Scholar 

  6. Famouri P., Wang J. (1997) Loss minimization control of a DC motor drive. Electric Machines and Power Systems 25:525–537

    Google Scholar 

  7. Fliess M., Lévine J., Martin P., Rouchon P. (1995) Flatness and defect of non-linear systems: introductory theory and examples. Internat J Control 61:1327–1361

    Article  MATH  MathSciNet  Google Scholar 

  8. Fliess M., Lévine J., Martin P., Rouchon P. (1999) A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans Automat Control 44:922–937

    Article  MATH  MathSciNet  Google Scholar 

  9. Jakubczyk B., Respondek W. (1980) On linearization of control systems. Bull Acad Pol Sci Set Sci Math 28:517–522

    MATH  MathSciNet  Google Scholar 

  10. Kusko A., Galler D. (1983) Control means for minimization of losses in AC and DC motor drives. IEEE Trans Ind Appl 19:561–570

    Google Scholar 

  11. Leonhard W. (1996) Control of Electrical Drives, 2nd edn. Springer, Braunschweig

    Google Scholar 

  12. Müller G. Elektrische Maschinen: Theorie rotierender elektrischer Maschinen, VEB Verlag Technik, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Isidori (Professor)Françoise Lamnabhi-Lagarrigue (Docteur D’état)Witold Respondek (Professor)

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Hagenmeyer, V., Kohlrausch, P., Delaleau, E. (2001). Flatness-based control of the separately excited DC drive. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the Year 2000. Lecture Notes in Control and Information Sciences, vol 258. Springer, London. https://doi.org/10.1007/BFb0110232

Download citation

  • DOI: https://doi.org/10.1007/BFb0110232

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-363-8

  • Online ISBN: 978-1-84628-568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics