Skip to main content

Controlling self-similar traffic and shaping techniques

  • Conference paper
  • First Online:
Nonlinear control in the year 2000 volume 2

Abstract

The paper considers shaping control of a two-queue network. It has been postulated that shaping has no effect on the network performance for long range dependent (LRD) traffic. The two-queue network has shaping in one queue of the two-queue network which vastly improves the overall performance without removing the LRD properties. In particular, a critical value of the shaping parameter is found which changes the decay of one of the queues from power law to exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Norros. (1993) Studies on a model for connectionless traffic, based on fractional brownian motion. Conf. On Applied Probability in Engineering, Computer and Communication Sciences, Paris:16–18

    Google Scholar 

  2. O. Narayan. (1998) Exact asymptotic queue length distribution for fractional brownian traffic. Advances in Performance Analysis, 1 (1):39–63

    MathSciNet  Google Scholar 

  3. O. J. Boxma and J. W. Cohen. (1998) The m/g/1 queue with heavy-tailed service time distribution. IEEE Jou. on Selected Areas in Communications, 16, No.5:749–763

    Article  Google Scholar 

  4. R. J. Mondragón. (2000) Intermittency maps and queues: Modelling self-similar traffic and its performance. preprint

    Google Scholar 

  5. M. S. Taqqu, W. Willinger, and R. Sherman. (1997) Proof of a fundamental result in self-similar traffic modelling. Comp. Comm. Rev., 27, No. 2:5–23

    Article  Google Scholar 

  6. H.P. Schwefel and L. Lipsky. (1999) Impact of aggregated, self-similar on/off traffic on delay in stationary queueing models. Spie Conference on Performance and Control of Network Systems III, Boston, Mass., 3841:184–195

    Google Scholar 

  7. C. Huang, M. Devetsikiotis, I. Lambadaris, and R. Kaye. (1995) Fast simulation for self-similar traffic in atm networks. IEEE ICC95 Seattle, Washington, pages 438–444

    Google Scholar 

  8. P. Pruthi and A. Popescu. (1997) Effect of controls on self-similar traffic. in Proceedings of the 5th IFIP ATM Workshop Bradford, UK

    Google Scholar 

  9. A. Erramilli, O. Naranyan, and W. Willinger. (1996) Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Trans on Networking, Vol 4, No 2:209–223

    Article  Google Scholar 

  10. R. Jain and S. A. Routhier. (1986) Packet trains: Measurements and a new model for computer network traffic. IEEE Journal on Selected Areas, 4:986–995

    Article  Google Scholar 

  11. A. Erramilli, R. P. Singh, and P. Pruthi. (1994) Chaotic maps as models of packet traffic. In Proc. ITC 14, The Fundamental Role of Teletraffic in the Evolution of Telecommunication Networks, pages 329–338

    Google Scholar 

  12. A. Erramilli, P. Pruthi, and W. Willinger. (1994) Modelling packet traffic with chaotic maps. ISRN KTH/IT/R-94/18-SE, Stockholm-Kista, Sweden

    Google Scholar 

  13. P. Pruthi and A. Erramilli. (1995) Heavy-tailed on/off source behaviour and self-similar traffic. Proc. ICC 95

    Google Scholar 

  14. H. G. Schuster. (1995) Deterministic Chaos An Introduction. 3rd. Ed. VCH Verlagsgesellschaft, Weinheim Germany

    MATH  Google Scholar 

  15. R. J. Mondragón. (1999) A model of packet traffic using a random wall model. Int. Jou. of Bif. and Chaos, 9 (7):1381–1392

    Article  MATH  Google Scholar 

  16. R. J. Mondragon, D. Nucinkis, and D.K. Arrowsmith. (2000) Aggregation of lrd traffic using chaotic maps. in preparation

    Google Scholar 

  17. A. Erramilli, R. P. Singh, and P. Pruthi. (1995) An application of deterministic chaotic maps to model packet traffic. Queueing Systems, 20:171–206

    Article  MATH  MathSciNet  Google Scholar 

  18. L. G. Samuel, J. M. Pitts, R. J. Mondragón, and D. K. Arrowsmith. (1998) The maps control paradigm: using chaotic maps to control telecoms networks. In Broadband Communications, The Future of Telecommunications, Eds. Kühn P. and Ulrich R., Chapman and Hall, London, pages 371–382

    Google Scholar 

  19. L. G. Samuel, J. M. Pitts, and R. J. Mondragón. (1997) Towards the control of communication networks by chaotic maps: Source aggregation. In Vol 2b, Proc.ITC15, Teletraffic Contributions for the information age, eds V. Ramaswami and P.E. Wirth, Elsevier, Amsterdam, pages 1369–1378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Isidori Françoise Lamnabhi-Lagarrigue Witold Respondek

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Mondragón C, R.J., Arrowsmith, D.K., Pitts, J. (2001). Controlling self-similar traffic and shaping techniques. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the year 2000 volume 2. Lecture Notes in Control and Information Sciences, vol 259. Springer, London. https://doi.org/10.1007/BFb0110299

Download citation

  • DOI: https://doi.org/10.1007/BFb0110299

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-364-5

  • Online ISBN: 978-1-84628-569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics