Skip to main content

Optical and photoelectric properties of organic charge transfer crystals

  • Chapter
  • First Online:
Festkörperprobleme 20

Part of the book series: Advances in Solid State Physics ((ASSP,volume 20))

Abstract

One dimensional molecular packing and the polar nature of their excited states are characteristic features of charge transfer (CT) crystals. Both properties lead to unique band structures where excitonic states and free electron hole pair levels are in close proximity and thus give rise to interesting photoelectric properties. Spectroscopic data and transport measurements are presented which document the polar nature of the excited state and which show that electron hole separation processes are more efficient in CT crystal than in normal anthracene-like molecular crystals. A special feature of CT crystals, their one dimensionality, is discussed in detail. It is shown by microscopic experiments on charge carrier trapping that the anisotropy in these materials can be quite large (100:1). This anisotropy is mostly masked in straght-forward macroscopic mobility experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Werner, Berichte 42, 4324 (1909).

    Google Scholar 

  2. P. Pfeiffer, “Organische Molekülverbindungen” 2nd Edition, Ferdinand Enke, Stuttgart (1927).

    Google Scholar 

  3. R. S. Mulliken, JACS 72, 600 (1950).

    Article  Google Scholar 

  4. R. S. Mulliken, JCP 19, 514 (1951).

    Google Scholar 

  5. S. P. McGlynn, Chem. Rev. 58, 1113 (1958).

    Article  Google Scholar 

  6. G. Briegleb, “Elektronen Donor-Acceptor-Komplexe”, Springer-Verlag, Berlin (1961).

    Google Scholar 

  7. R. Foster, “Organic Charge-Transfer Complexes”, Academic Press, London, New York, 1969.

    Google Scholar 

  8. “Chemistry and Physics of One-Dimensional Metals”, Edited by H. J. Keller, Plenum Press, New York (1977)

    Google Scholar 

  9. J. B. Torrance, J. J. Mayerle, V. Y. Lee and K. Bechgaard, JACS. 101, 4747 (1979).

    Article  Google Scholar 

  10. D. Jerome, A. Mazaud, M. Ribault and K. Bechgaard, J. Physique Lett. (in press).

    Google Scholar 

  11. J. C. A. Boeyens and F. H. Herbstein, J. Phys. Chem. 69, 2153 (1965).

    Article  Google Scholar 

  12. A. S. Davydov, “Theory of Molecular Excitons” McGraw-Hill, New York, London (1962).

    Google Scholar 

  13. D. P. Craig and S. H. Walmsley, “Excitons in Molecular Crystals”, W. A. Benjamin, New York (1968).

    Google Scholar 

  14. A. Mcl. Mathieson, J. M. Robertson and V. C. Sinclair, Acta Cryst. 3, 245 (1950).

    Article  Google Scholar 

  15. T. Holstein, Annals of Physics 8, 325 (1959).

    Article  ADS  Google Scholar 

  16. Th. Foerster, Mod. Quantum Chem. Vol. 3, Academic Press, New York, London (1965), pp. 93 ff.

    Google Scholar 

  17. Y. Toyozawa, J. Luminescence, 12, 632 (1970).

    Google Scholar 

  18. D. Haarer and K. Karl, Chem. Phys. Lett. 21, 49 (1973).

    Article  ADS  Google Scholar 

  19. W. G. Pfann, Zone Melting, J. Wiley & Sons, NY, London, Sydney (2nd edition, 1966).

    Google Scholar 

  20. J. Czekala, Z. Elektrochemie 63, 1157 (1959).

    Google Scholar 

  21. J. Czekala, G. Briegleb, W. Herre and R. Gier, Z. Electrochemie 61, 537 (1957)

    Google Scholar 

  22. S. K. Lower, R. M. Hochstrasser and C. Reid, Mole. Phys. 4, 161 (1961).

    Article  ADS  Google Scholar 

  23. R. M. Hochstrasser, S. K. Lower and C. Reid, JCP 41, 1073 (1964).

    Article  Google Scholar 

  24. R. S. Mulliken, JACS 74, 811 (1952).

    Article  Google Scholar 

  25. D. Haarer, Chem. Phys. Lett. 27, 91 (1974).

    Article  ADS  Google Scholar 

  26. D. Haarer, 8th Molecular Crystal Symposium, Santa Barbara (May 1977).

    Google Scholar 

  27. D. Haarer, JCP 67, 4076 (1977).

    Google Scholar 

  28. M. H. L. Pryce in “Phonons,“ edited by K. W. H. Stevenson, Plenum Press, (NY, 1966).

    Google Scholar 

  29. K. Huang and A. Rhys, Proc. R. Soc. London Ser. A 208, 352 (1951).

    Article  MATH  ADS  Google Scholar 

  30. D. B. Fitchen, K. H. Sibsbee, T. A. Fulton and L. E. Wolf, Phys. Rev. Lett. 11, 275 (1963).

    Article  ADS  Google Scholar 

  31. V. M. Agranovich and A. A. Zakhidov, Chem. Phys. Lett. 50, 278 (1977).

    Article  ADS  Google Scholar 

  32. D. Haarer, J. Luminescence 18/19, 453 (1979).

    Article  ADS  Google Scholar 

  33. S. Iwata, J. Tanaka and S. Nagakura, JCP 47, 2203 (1967).

    Article  Google Scholar 

  34. H. Beens, J. de Jong and A. Weller, Coll. Amp. 15, 289 (1969).

    Google Scholar 

  35. H. Moehwald and E. Sackmann, Z. Naturforsch. A29, 1216, (1974).

    ADS  Google Scholar 

  36. C. P. Keijzers and D. Haarer, JCP 67, 925 (1977).

    Article  Google Scholar 

  37. D. Haarer, M. R. Philpott and H. Morawitz, JCP 63, 5238 (1975).

    Article  Google Scholar 

  38. T. Sakata and S. Nagakura, Bull. Chem. Soc. Jpn. 43, 1346 (1970).

    Article  Google Scholar 

  39. D. Haarer, Chem. Phys. Lett. 37, 192 (1975).

    Article  ADS  Google Scholar 

  40. D. M. Hanson, Crit. Rev. Solid State Sci. 3, 243 (1973).

    Article  Google Scholar 

  41. K. G. Kepler, Phys. Rev. 199, 1226 (1960).

    Article  ADS  Google Scholar 

  42. O. H. LeBlanc, JCP 33, 626 (1960).

    Google Scholar 

  43. G. Castro and J. F. Hornig, JCP 42, 1459 (1965).

    Article  Google Scholar 

  44. K. R. Chance and C. L. Braun, JCP 64, 3573 (1976).

    Article  Google Scholar 

  45. N. Karl and J. Ziegler, Chem. Phys. Lett. 32, 438 (1975).

    Article  ADS  Google Scholar 

  46. D. Haarer and H. Moehwald (unpublished results).

    Google Scholar 

  47. R. M. Schaffert, IBM J. Res. Dev. 15, 75 (1971).

    Article  Google Scholar 

  48. W. D. Gill, J. Appl. Phys. 43, 5033 (1972).

    Article  ADS  Google Scholar 

  49. H. Scher and E. W. Montroll, Phys. Rev. B12, 2455 (1975).

    Article  ADS  Google Scholar 

  50. F. H. Herbstein in “Perspectives in Structural Chemistry”, edited by J. D. Dunitz and J. A. Ibers, Wiley, NY (1971), Vol. 4.

    Google Scholar 

  51. D. L., Evans and W. T. Robins, Acta Cryst. B33, 2891 (1977).

    Article  Google Scholar 

  52. M. C. Tobin and D. P. Spitzer, JCP 42, 3652 (1965).

    Article  Google Scholar 

  53. J. H. Sharp, J. Phys. Chem. 71, 2587 (1967).

    Article  Google Scholar 

  54. H. Moehwald, D. Haarer and G. Castro, Chem. Phys. Lett. 32, 433 (1975).

    Article  ADS  Google Scholar 

  55. H. Moehwald and E. Sackmann, Chem. Phys. Lett 21, 41 (1973).

    ADS  Google Scholar 

  56. E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  57. D. Haarer and H. Moehwald, Phys. Rev. Lett. 34, 1447 (1975).

    Article  ADS  Google Scholar 

  58. H. Scher, S. Alexander and E. W. Montroll, Bull. Am. Phys. Soc. 25, 369 (1980).

    Google Scholar 

  59. H. Scher, S. Alexander and E. W. Montroll, Proc. Natl. Acad. Sci. (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Treusch

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Haarer, D. (1979). Optical and photoelectric properties of organic charge transfer crystals. In: Treusch, J. (eds) Festkörperprobleme 20. Advances in Solid State Physics, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116748

Download citation

  • DOI: https://doi.org/10.1007/BFb0116748

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08026-6

  • Online ISBN: 978-3-540-75365-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics