Skip to main content

Tailoring Benders decomposition for uncapacitated network design

  • Chapter
  • First Online:
Netflow at Pisa

Part of the book series: Mathematical Programming Studies ((MATHPROGRAMM,volume 26))

Abstract

Because of its imbedded network flow structure, the generic network design problem is an attractive candidate for integer programming decomposition. This paper studies the application and acceleration of Benders decomposition for uncapacitated models from this problem class and illustrates the potential flexibility of the Benders solution strategy. In particular, it (i) shows that several lower bounding inequalities from the literature can be derived as Benders cuts; and (ii) introduces new Benders cuts for the network design problem.

The paper also reports on computational experience in using Benders decomposition with a dual ascent and variable elimination preprocessing procedure to solve uncapacitated network design problems with up to 90 binary variables and 15 080 continuous variables, or 45 binary variables and 105 600 continuous variables.

Supported in part by grants ECS-792-6225 and ECS-831-6224 from the national Science Foundation’s Program on Systems Theory and Operations Research.

Supported in part by grants ECS-811-7876 and ECS-831-6224 from the National Science Foundation’s Program on Systems Theory and Operations Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. Balas and N. Christofides, “A restricted Lagrangean approach to the traveling salesman problem”, Mathematical Programming 21 (1981) 19–46.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Balakrishan, T.L. Magnanti and R.T. Wong, “A dual-ascent approach for network design problems”, in preparation (1985).

    Google Scholar 

  • I. Barany, T. Van Roy and L. Wolsey, “Strong formulations for multi-item capacitated lot-sizing”, Management Science 30 (1984) 1255–1261.

    Article  MATH  MathSciNet  Google Scholar 

  • E.M.L. Beale and J.A. Tomlin, “An integer programming approach to a class of combinatorial problems”, Mathematical Programming 3 (1972) 339–344.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Bilde and J. Krarup, “Sharp lower bounds and efficient algorithms for the simple plant location problem”, Annals of Discrete Mathematics 1 (1977) 79–97.

    Article  MathSciNet  Google Scholar 

  • J. Billheimer and P. Gray, “Network design with fixed and variable cost elements”, Transportation Science 7 (1973) 49–74.

    Article  Google Scholar 

  • F. Boesch, Large-scale networks: Theory and design (IEEE Press, 1975).

    Google Scholar 

  • T.B. Boffey and A.I. Hinxman, “Solving the optimal network problem”, European Journal of Operational Research 3 (1979) 386–393.

    Article  MATH  MathSciNet  Google Scholar 

  • D.E. Boyce, ed., Transportation Research B 13B(1) (1979) 1–3.

    Google Scholar 

  • D.E. Boyce, A. Farhi and R. Weischedel, “Optimal network problem: A branch-and-bound algorithm”, Environment and Planning 5 (1973) 519–533.

    Article  Google Scholar 

  • C. Cornuejols, M.L. Fisher and G.L. Nemhauser, “Location of bank accounts to optimize flow”, Management Science 23 (1977) 789–810.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Crowder, E. Johnson and M.W. Padberg, “Solving large-scale zero-one linear programming problems”, Operations Research 31 (1983) 803–834.

    Article  MATH  Google Scholar 

  • H. Crowder and M.W. Padberg, “Large scale symmetric travelling salesman problems”, Management Science 26 (1980) 495–509.

    Article  MATH  MathSciNet  Google Scholar 

  • P.S. Davis and T.L. Ray, “A branch-bound algorithm for capacitated facilities location problems”, Naval Research Logistics Quarterly 16 (1969) 331–344.

    MATH  Google Scholar 

  • R. Dionne and M. Florian, “Exact and approximate algorithms for optimal network design”, Networks 9 (1979) 37–59.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Erlenkotter, “A dual based procedure for uncapacitated facility location”, Operations Research 26 (1978) 992–1009.

    Article  MATH  MathSciNet  Google Scholar 

  • M.L. Fisher, R. Jaikumar and L. VanWassenhove, “A multiplier adjustment method for the generalized assignment problem” (presented at ORSA/TIMS Meeting, Washington, D.C., May 1980).

    Google Scholar 

  • M.L. Fisher and D.S. Hochbaum, “Data base location in computer networks”, Journal of the ACM 7 (1980) 718–735.

    Article  MathSciNet  Google Scholar 

  • M. Florian, G. Guerin and G. Bushel, “The engine schedulign problem in a railway network”, INFOR Journal 14 (1976) 121–138.

    MATH  Google Scholar 

  • R. Francis and J. White, Facility layout and locations, an analytical approach (Prentice-Hall, Englewood Cliffs, New Jersey, 1974).

    Google Scholar 

  • G. Gallo, “A new branch-and-bound algorithm for the network design problem”, Report L81-1, Instituto Di Elaborazione Dell’ Informazione (Pisa, Italy, 1981).

    Google Scholar 

  • G. Gallo, “Lower planes for the network design problem”, Networks 13 (1983) 411–426.

    Article  MATH  MathSciNet  Google Scholar 

  • A.M. Geoffrion and G. Graves, “Multicommodity distribution system design by Benders decomposition”, Management Science 5 (1974) 822–844.

    Article  MathSciNet  Google Scholar 

  • A. Geoffrion and R. Marsten, “Integer programming algorithms: A framework and state-of-the-art survey”, Management Science 18 (1972) 465–491.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Graves and B. Lamar, “An integer programming procedure for assembly system design problems”, Operations Research 31 (1983) 522–545.

    Article  MATH  Google Scholar 

  • M. Guignard, “Preprocessing and optimization in network flow problems with fixed charges”, Department of Statistics, Report #47, Wharton, School, University of Pennsylvania (1982).

    Google Scholar 

  • M. Guignard and K. Spielberg, “A direct dual method for the mixed plant location problem with some side constraints”, Mathematical Programming 17 (1979) 198–228.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Guignard and K. Spielberg, “Logical reduction methods in 0–1 programming”, Operations Research 29 (1981) 49–74.

    Article  MATH  MathSciNet  Google Scholar 

  • G. Handler and P. Mirchandani, Location on networks: Theory and algorithms (MIT Press, Cambridge, Mass., 1979).

    MATH  Google Scholar 

  • H.H. Hoang, “A computational approach to the selection of an optimal network”, Management Science 19 (1973) 488–498.

    Article  MATH  Google Scholar 

  • D.S. Johnson, J.K. Lenstra and A.H.G. Rinnooy Kan, “The complexity of the network design problem”, Networks 8 (1978) 279–285.

    Article  MATH  MathSciNet  Google Scholar 

  • J.L. Kennington and R.V. Helgason, Algorithms for network programming (John Wiley & Sons, New York, 1980).

    MATH  Google Scholar 

  • D. Knuth, The art of computer programming: Volume 2, seminumerical algorithms (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  • J. Krimenia and S.B. Gershwin, “Network flow optimization in flexible manufacturing systems”, Proceedings of 1978 IEEE Conference on Decision and Control (1979) 633–639.

    Google Scholar 

  • A. Land and S. Powell, Fortran codes for mathematical programming (John Wiley & Sons, London, 1973).

    MATH  Google Scholar 

  • A. Land and S. Powell, “Computer codes for problems of integer programming”, Annals of Discrete Mathematics 5 (1979) 221–269.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Land and S. Powell, “A survey of available computer codes to solve integer linear programming problems”, Research Report No. 81-09, Ecole des Hautes Etudes Commerciales, University of Montreal (April 1981).

    Google Scholar 

  • R.C. Larson and A.R. Odoni, Urban operations research (Prentice-Hall, Englewood Cliffs, New Jersey, 1981).

    Google Scholar 

  • C.E. Lemke and K. Spielberg, “Direct search zero one and mixed integer programming”, Operations Research 15 (1967) 892–914.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Los and C. Lardinois, “Combinatorial programming, statistical optimization and the optimal transportation network problem”, Transportation Research-B 16B (1982) 89–124.

    Article  MathSciNet  Google Scholar 

  • T.L. Magnanti, “Combinatorial optimization and vehicle fleet planning: Perspectives and prospects”, Networks 11 (1981) 179–214.

    Article  MathSciNet  Google Scholar 

  • T.L. Magnanti and R.T. Wong, “Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria”, Operations Research 29 (1981) 464–484.

    Article  MATH  MathSciNet  Google Scholar 

  • T.L. Magnanti and R.T. Wong, “Network design and transportation planning: Models and algorithms”, Transportation Science 18 (1984a) 1–56.

    Article  Google Scholar 

  • T.L. Magnanti and R.T. Wong, “Decomposition methods for facility location problems”, to appear in: P. Mirchandani and R. Francis, eds., Discrete location theory (John Wiley & Sons, New York, 1984b).

    Google Scholar 

  • T.G. Mairs, G.W. Wakefield, E.L. Johnson and K. Spielberg, “On a production allocation and distribution problem”, Management Science 24 (1978) 1622–1630.

    Article  Google Scholar 

  • C. Mandl, “A survey of mathematical optimization models and algorithms for designing and extending irrigation and wastewater networks”, Water Resource Research 17 (1) (1981).

    Article  MathSciNet  Google Scholar 

  • K. Martin and L. Schrage, “Subset coefficient reduction cutting planes for 0/1 mixed-integer programming”, Graduate School of Business, University of Chicago (Revised October 1982).

    Google Scholar 

  • G. Nemhauser and L. Wolsey, “Maximizing submodular set functions: Formulation and analysis of algorithms”, Annals of Discrete Mathematics 11 (1981) 279–301.

    MATH  MathSciNet  Google Scholar 

  • R.L. Rardin and U. Choe, “Tighter relaxations of fixed charge network flow problems”, Technical Report, No. J-79-18, School of Industrial and Systems Engineering, Georgia Institute of Technology (Atlanta, GA, May 1979).

    Google Scholar 

  • R. Richardson, “An optimization approach to routing aircraft”, Transportation Science 10 (1976) 52–71.

    Article  Google Scholar 

  • R. Simpson, “Scheduling and routing models for airline systems”, MIT Flight Transportation Laboratory Report (December 1969).

    Google Scholar 

  • B.C. Tansel, R.L. Francis and T.L. Lowe, “Location on networks: A survey, parts I and II”, Management Science 29 (1983) 482–511.

    Article  MATH  MathSciNet  Google Scholar 

  • T.J. Van Roy and D. Erlenkotter, “A dual-based procedure for dynamic facility location”, Management Science 28 (1982) 1091–1105.

    Article  MATH  Google Scholar 

  • H.P. Williams, “Experiments in the formulation of integer programming problems”, Mathematical Programming Study 2 (1974) 180–197.

    Google Scholar 

  • R.T. Wong, “Accelerating Benders decomposition for network design”, Doctoral Dissertation, Department of Electrical Engineering and Computer Science, MIT (February 1978).

    Google Scholar 

  • R.T. Wong, “Worst-case analysis of network design problem heuristics”, SIAM Journal of Algebraic Discrete Methods 1 (1980) 41–63.

    Google Scholar 

  • R.T. Wong, “A dual ascent approach for Steiner tree problems on a directed graph”, Mathematical Programming 28 (1984) 271–287.

    Article  MATH  MathSciNet  Google Scholar 

  • R.T. Wong, “Probabilistic analysis of a network design problem heuristic”, Krannert Graduate School of Management, Purdue University (West Lafayette, Indiana, 1984), to appear in Networks.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Giorgio Gallo Claudio Sandi

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Mathematical Programming Society, Inc.

About this chapter

Cite this chapter

Magnanti, T.L., Mireault, P., Wong, R.T. (1986). Tailoring Benders decomposition for uncapacitated network design. In: Gallo, G., Sandi, C. (eds) Netflow at Pisa. Mathematical Programming Studies, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0121090

Download citation

  • DOI: https://doi.org/10.1007/BFb0121090

  • Received:

  • Revised:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00922-8

  • Online ISBN: 978-3-642-00923-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics