Skip to main content

Adenosine to inosine RNA editing in animal cells

  • Chapter
  • First Online:
Fine-Tuning of RNA Functions by Modification and Editing

Part of the book series: Topics in Current Genetics ((TCG,volume 12))

Abstract

Major advances in the understanding of adenosine deaminases acting on RNA (ADARs) have come from the generation of ADAR mutant animals. In mice, ADAR1 is a widely expressed essential gene and loss of function in embryos leads to apoptosis through unknown mechanisms in many different cell types. Mammalian ADAR2 is required primarily to edit glutamate receptor transcripts in the nervous system. The Drosophila melanogaster genome contains one Adar gene; mutant flies are normal in morphology and lifespan, but severely compromised neurologically and behaviourally. In C. elegans, double mutants in Adr1 and Adr2 genes are viable with chemosensory defects that appear to arise from interactions between RNA editing and RNA interference. ADARs also extensively deaminate long double-stranded (ds) RNA in a process that has been proposed to have anti-viral effects. Genome sequences have facilitated progress in identifying edited RNAs. The majority of the twenty-three edited transcripts identified in Drosophila encode proteins involved in rapid chemical and electrical neurotransmission and extensive editing of embedded Alu RNAs has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Bass BL, Weintraub H (1987) A developmental regulated activity that unwinds RNA duplexes. Cell 48:607-613

    Google Scholar 

  • 2. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-strand RNA substrate. Cell 55:1089-1098

    Article  CAS  PubMed  Google Scholar 

  • 3. Bass BL, Weintraub H, Cattaneo R, Billeter MA (1989) Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 56:331

    Google Scholar 

  • 4. Bhalla T, Rosenthal JJC, Holmgren M, Reenan R (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nature Struct Biol (in press)

    Google Scholar 

  • 5. Brusa R, Zimmermann F, Koh D-S, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with editing-deficient GluR-B allele in mice. Science 270:1677-1680

    CAS  PubMed  Google Scholar 

  • 6. Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8:189-198

    Article  CAS  PubMed  Google Scholar 

  • 7. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303-308

    Article  CAS  PubMed  Google Scholar 

  • 8. Chen CX, Cho DS, Wang Q, Lai F, Carter KC, Nishikura K (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755-767

    Article  CAS  Google Scholar 

  • 9. Cho DS, Yang W, Lee JT, Shiekhattar R, Murray JM, Nishikura K (2003) Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J Biol Chem 278:17093-17102

    Google Scholar 

  • 10. Desterro JM, Keegan LP, Lafarga M, Berciano MT, O’Connell M, Carmo-Fonseca M (2003) Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116:1805-1818

    Google Scholar 

  • 11. Gallo A, Keegan LP, Ring GM, O’Connell MA (2003) An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J 22:3421-3430

    Google Scholar 

  • 12. George CX, Samuel CE (1999) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci USA 96:4621-4626

    Google Scholar 

  • 13. Grauso M, Reenan RA, Culetto E, Sattelle DB (2002) Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics 160:1519-1533

    Google Scholar 

  • 14. Greger IH, Khatri L, Kong X, Ziff EB (2003) AMPA receptor tetramerization is mediated by q/r editing. Neuron 40:763-774

    Article  CAS  PubMed  Google Scholar 

  • 15. Greger IH, Khatri L, Ziff EB (2002) RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron 34:759-772

    Article  CAS  PubMed  Google Scholar 

  • 16. Gurevich I, Englander MT, Adlersberg M, Siegal NB, Schmauss C (2002a) Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22:10529-10532

    Google Scholar 

  • 17. Gurevich I, Tamir H, Arango V, Dwork AJ, Mann JJ, Schmauss C (2002b) Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34:349-356

    Google Scholar 

  • 18. Hanrahan CJ, Palladino MJ, Bonneau LJ, Reenan RA (1998) RNA editing of a Drosophila sodium channel gene. Ann NY Acad Sci 868:51-66

    Google Scholar 

  • 19. Hanrahan CJ, Palladino MJ, Ganetzky B, Reenan RA (2000) RNA editing of the drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation. Genetics 155:1149-1160

    Google Scholar 

  • 20. Harris ME, Hajduk SL (1992) Kinetoplastid RNA editing: in vitro formation of cytochrome b gRNA-mRNA chimeras from synthetic substrate RNAs. Cell 68:1091-1099

    Google Scholar 

  • 21. Hartner JC, Schmittwolf C, Kispert A, Muller AM, Higuchi M, Seeburg PH (2004) Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem 279:4894-4902

    Google Scholar 

  • 22. Haudenschild BL, Maydanovych O, Veliz EA, Macbeth MR, Bass BL, Beal PA (2004) A transition state analogue for an RNA-editing reaction. J Am Chem Soc 126:11213-11219

    Google Scholar 

  • 23. Herb A, Higuchi M, Sprengel R, Seeburg PH (1996) Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 93:1875-1880

    Google Scholar 

  • 24. Herbert A (1996) RNA editing, introns and evolution. Trends Genet 12:6-9

    Article  CAS  PubMed  Google Scholar 

  • 25. Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, Lyubchenko YL, Rich A (1998) The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res 26:3486-3493

    Google Scholar 

  • 26. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78-81

    Article  CAS  PubMed  Google Scholar 

  • 27. Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: A base-paired intron-exon structure determines position and efficiency. Cell 75:1361-1370

    CAS  PubMed  Google Scholar 

  • 28. Hoopengardner B, Bhalla T, Staber C, Reenan R (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832-836

    Article  CAS  PubMed  Google Scholar 

  • 29. Hough RF, Bass BL (1994) Purification of the Xenopus laevis dsRNA adenosine deaminase. J Biol Chem 269:9933-9939

    Google Scholar 

  • 30. Hough RF, Bass BL (1997) Analysis of Xenopus dsRNA adenosine deaminase cDNAs reveals similarities to DNA methlytransferases. RNA 3:356-370

    Google Scholar 

  • 31. Hough RF, Lingam AT, Bass BL (1999) Caenorhabditis elegans mRNAs that encode a protein similar to ADARs derive from an operon containing six genes. Nucleic Acids Res 27:3424-3432

    Google Scholar 

  • 32. Jaikaran DC, Collins CH, MacMillan AM (2002) Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. J Biol Chem 277:37624-37629

    Google Scholar 

  • 33. Kask K, Zamanillo D, Rozov A, Burnashev N, Sprengel R, Seeburg PH (1998) The AMPA receptor subunit GluR-B in its Q/R site-unedited form is not essential for brain development and function. Proc Natl Acad Sci USA 95:13777-13782

    Google Scholar 

  • 34. Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801

    Article  CAS  PubMed  Google Scholar 

  • 35. Kawahara Y, Kwak S, Sun H, Ito K, Hashida H, Aizawa H, Jeong SY, Kanazawa I (2003) Human spinal motoneurons express low relative abundance of GluR2 mRNA: an implication for excitotoxicity in ALS. J Neurochem 85:680-689

    CAS  PubMed  Google Scholar 

  • 36. Kawakubo K, Samuel CE (2000) Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene 258:165-172

    Google Scholar 

  • 37. Keegan LP, Leroy A, Sproul D, O’Connell MA (2004) Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol 5:209

    Google Scholar 

  • 38. Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A (2004) Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 14:1719-1725

    Google Scholar 

  • 39. Kim U, Garner TL, Sanford T, Speicher D, Murray JM, Nishikura K (1994a) Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem 269:13480-13489

    Google Scholar 

  • 40. Kim U, Wang Y, Sanford T, Zeng Y, Nishikura K (1994b) Molecular cloning of cDNAs for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci USA 91:11457-11461

    Google Scholar 

  • 41. Kumar M, Carmichael GC (1997) Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci USA 94:3542-3547

    Google Scholar 

  • 42. Kung SS, Chen YC, Lin WH, Chen CC, Chow WY (2001) Q/R RNA editing of the AMPA receptor subunit 2 (GRIA2) transcript evolves no later than the appearance of cartilaginous fishes. FEBS Lett 509:277-281

    Google Scholar 

  • 43. Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman ZY, Shoshan A, Pollock SR, Sztybel D, Olshansky M, Rechavi G, Jantsch MF (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001-1005

    Google Scholar 

  • 44. Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709-1713

    CAS  PubMed  Google Scholar 

  • 45. Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004) RNA editing of a miRNA precursor. RNA 10:1174-1177

    Google Scholar 

  • 46. Melcher T, Maas S, Herb A, Sprengel R, Higuchi M, Seeburg PH (1996a) RED2, a brain specific member of the RNA-specific adenosine deaminase family. J Biol Chem 271:31795-31798

    Google Scholar 

  • 47. Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996b) A mammalian RNA editing enzyme. Nature 379:460-464

    Article  CAS  PubMed  Google Scholar 

  • 48. Miyamura Y, Suzuki T, Kono M, Inagaki K, Ito S, Suzuki N, Tomita Y (2003) Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am J Hum Genet 73:693-699

    Google Scholar 

  • 49. Morse DP, Aruscavage PJ, Bass BL (2002) RNA hairpins in noncoding regions of human brain and Caenorhabditis elegans mRNA are edited by adenosine deaminases that act on RNA. Proc Natl Acad Sci USA 99:7906-7911

    Google Scholar 

  • 50. Morse DP, Bass BL (1997) Detection of inosine in messenger RNA by insine-specific cleavage. Biochemistry 36:8429-8434

    Google Scholar 

  • 51. Morse DP, Bass BL (1999) Long RNA hairpins that contain inosine are present in Caenorhabditis elegans poly(A)+ RNA. PNAS 96:6048-6053

    Google Scholar 

  • 52. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472-9478

    CAS  PubMed  Google Scholar 

  • 53. Niswender CM, Herrick-Davis K, Dilley GE, Meltzer HY, Overholser JC, Stockmeier CA, Emeson RB, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24:478-491

    Google Scholar 

  • 54. O’Connell MA, Gerber A, Keller W (1997) Purification of human double-stranded RNA-specific editase1 (hRed1), involved in editing of brain glutamate receptor B pre-mRNA. J Biol Chem 272:473-478

    Google Scholar 

  • 55. O’Connell MA, Keller W (1994) Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci USA 91:10596-10600

    Google Scholar 

  • 56. O’Connell MA, Krause S, Higuchi M, Hsuan JJ, Totty NF, Jenny A, Keller W (1995) Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol 15:1389-1397

    PubMed  Google Scholar 

  • 57. Ohman M, Kallman AM, Bass BL (2000) In vitro analysis of the binding of ADAR2 to the pre-mRNA encoding the GluR-B R/G site. RNA 6:687-697

    Google Scholar 

  • 58. Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000a) dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 6:1004-1018

    Google Scholar 

  • 59. Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000b) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102:437-449

    Google Scholar 

  • 60. Patton DE, Silva T, Bezanilla F (1997) RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron 19:711-722

    Google Scholar 

  • 61. Paul M, Bass BL (1998) Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J 17: 1120-1127

    Google Scholar 

  • 62. Peters NT, Rohrbach JA, Zalewski BA, Byrkett CM, Vaughn JC (2003) RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts. RNA 9:698-710

    Google Scholar 

  • 63. Petschek JP, Mermer MJ, Scheckelhoff MR, Simone AA, Vaughn JC (1996) RNA editing in Drosophila 4f-rnp gene nuclear transcripts by multiple A-to-G conversions. J Mol Biol 259:885-890

    Google Scholar 

  • 64. Poulsen H, Nilsson J, Damgaard CK, Egebjerg J, Kjems J (2001) CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol Cell Biol 21:7862-7871

    Google Scholar 

  • 65. Rebagliati MR, Melton DA (1987) Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 48:599-605

    Google Scholar 

  • 66. Rosenthal JJ, Bezanilla F (2002) Extensive editing of mRNAs for the squid delayed rectifier K(+) channel regulates subunit tetramerization. Neuron 34:743-757

    Google Scholar 

  • 67. Scadden AD, Smith CW (2001a) RNAi is antagonized by A$to$I hyper-editing. EMBO Rep 2:1107-1111

    Google Scholar 

  • 68. Scadden AD, Smith CW (2001b) Specific cleavage of hyper-edited dsRNAs. EMBO J 20:4243-4252

    Google Scholar 

  • 69. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841-1845

    Google Scholar 

  • 70. Semenov EP, Pak WL (1999) Diversification of Drosophila chloride channel gene by multiple posttranscriptional mRNA modifications. J Neurochem 72:66-72

    Google Scholar 

  • 71. Serra MJ, Smolter PE, Westhof E (2004) Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res 32:1824-1828

    Google Scholar 

  • 72. Shaw PJ, Eggett CJ (2000) Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J Neurol 247 Suppl 1:I17-27

    Google Scholar 

  • 73. Shaw PJ, Ince PG (1997) Glutamate, excitotoxicity and amyotrophic lateral sclerosis. J Neurol 244 Suppl 2:S3-S14

    Google Scholar 

  • 74. Smith LA, Peixoto AA, Hall JC (1998) RNA editing in the Drosophila DMCA1A calcium-channel alpha 1 subunit transcript. J Neurogenet 12:227-240

    Google Scholar 

  • 75. Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11-19

    Article  CAS  PubMed  Google Scholar 

  • 76. Stephens OM, Haudenschild BL, Beal PA (2004) The binding selectivity of ADAR2’s dsRBMs contributes to RNA-editing selectivity. Chem Biol 11:1239-1250

    Google Scholar 

  • 77. Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302:1725

    Google Scholar 

  • 78. Tonkin LA, Saccomanno L, Morse DP, Brodigan T, Krause M, Bass BL (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21:6025-6035

    Google Scholar 

  • 79. Vollmar W, Gloger J, Berger E, Kortenbruck G, Kohling R, Speckmann EJ, Musshoff U (2004) RNA editing (R/G site) and flip-flop splicing of the AMPA receptor subunit GluR2 in nervous tissue of epilepsy patients. Neurobiol Dis 15:371-379

    Google Scholar 

  • 80. Wagner RW, Nishikura K (1988) Cell cycle expression of RNA duplex unwindase activity in mammalian cells. Mol Cell Biol 8:770-777

    Google Scholar 

  • 81. Wang Q, Miyakoda M, Yang W, Khillan J, Stachura DL, Weiss MJ, Nishikura K (2004) Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J Biol Chem 279:4952-4961

    Google Scholar 

  • 82. Wong SK, Sato S, Lazinski DW (2003) Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA 9:586-598

    Google Scholar 

  • 83. Zhang XJ, He PP, Li M, He CD, Yan KL, Cui Y, Yang S, Zhang KY, Gao M, Chen JJ, Li CR, Jin L, Chen HD, Xu SJ, Huang W (2004) Seven novel mutations of the ADAR gene in Chinese families and sporadic patients with dyschromatosis symmetrica hereditaria (DSH). Hum Mutat 23:629-630

    Google Scholar 

  • 84. Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus. A p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465-475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Grosjean

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hoopengardner, B., O’Connell, M.A., Reenan, R., Keegan, L.P. Adenosine to inosine RNA editing in animal cells. In: Grosjean, H. (eds) Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b106651

Download citation

Publish with us

Policies and ethics