Skip to main content

Patchwork Distributions

  • Chapter
  • First Online:
Advancing the Frontiers of Simulation

Abstract

Patchwork distributions are a class of distributions for use in simulation that can be used to model finite-dimensional random vectors with given marginal distributions and dependence properties. They are an extension of the previously developed chessboard distributions. We show how patchwork distributions can be selected to match several user-specified properties of the joint distribution. In constructing a patchwork distribution, one must solve a linear program that is potentially large. We develop results that shed light on the size of the linear program that one must solve. These results suggest that patchwork distributions should only be used to model random vectors with low dimension, say less than or equal to 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avramidis, A. N., N. Channouf, and P. L'Ecuyer. 2009. Efficient correlation matching for fitting discrete multivariate distributions with arbitrary marginals and normal-copula dependence. INFORMS Journal on Computing 21:88–106.

    Google Scholar 

  • Avramidis, A. N., A. Deslauriers, and P. L’Ecuyer. 2004. Modeling daily arrivals to a telephone call center. Management Science 50:896–908.

    Article  Google Scholar 

  • Biller, B. 2009. Copula-based multivariate input models for stochastic simulation. Operations Research forthcoming.

    Google Scholar 

  • Biller, B., and S. Ghosh. 2004. Dependence modeling for stochastic simulation. In Proceedings of the 2004 Winter Simulation Conference, eds. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, pp. 153–161. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • Biller, B., and S. Ghosh. 2006. Multivariate input processes. In Handbooks in Operations Research and Management Science: Simulation, eds. B. L. Nelson and S. G. Henderson, pp. 123–154. Amsterdam: Elsevier Science.

    Google Scholar 

  • Billingsley, P. 1995. Probability and Measure, 3rd ed. New York: Wiley.

    Google Scholar 

  • Brannen, N. S. 1997. The Wills conjecture. Transactions of the American Mathematical Society 349:3977–3987.

    Article  Google Scholar 

  • Busemann, H. 1958. Convex Surfaces. Interscience Tracts in Pure and Applied Mathematics, No. 6. New York: Interscience.

    Google Scholar 

  • Clemen, R. T., G. W. Fischer, and R. L. Winkler. 2000. Assessing dependence: Some experimental results. Management Science 46:1100–1115.

    Article  Google Scholar 

  • Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer-Verlag.

    Google Scholar 

  • Fishman, G. S. 2001. Discrete-event Simulation: Modeling, Programming and Analysis. Springer Series in Operations Research. New York: Springer.

    Google Scholar 

  • Ghosh, S., and S. G. Henderson. 2001. Chessboard distributions. In Proceedings of the 2001 Winter Simulation Conference, eds. B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, pp. 385–393. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

    Google Scholar 

  • Ghosh, S., and S. G. Henderson. 2002. Chessboard distributions and random vectors with specified marginals and covariance matrix. Operations Research 50:820–834.

    Article  Google Scholar 

  • Ghosh, S., and S. G. Henderson. 2003. Behaviour of the NORTA method for correlated random vector generation as the dimension increases. ACM Transactions on Modeling and Computer Simulation 13:276–294.

    Article  Google Scholar 

  • Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations,3rd ed. Baltimore, Maryland: The Johns Hopkins University Press.

    Google Scholar 

  • Henderson, S. G. 2005. Should we model dependence and nonstationarity, and if so how? In Proceedings of the 2005 Winter Simulation Conference, eds. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, pp. 120–129. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

    Chapter  Google Scholar 

  • Hill, R. R., and C. H. Reilly. 2000. The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science 46:302–317.

    Article  Google Scholar 

  • Joe, H. 1997. Multivariate Models and Dependence Concepts. London: Chapman & Hall.

    Google Scholar 

  • Johnson, M. E. 1987. Multivariate Statistical Simulation. New York: Wiley.

    Google Scholar 

  • Johnson, N. L., and S. Kotz. 2004. Cloning of distributions. Preprint.

    Google Scholar 

  • Kronmal, R. A., and A. V. Peterson. 1979. On the alias method for generating random variables from a discrete distribution. American Statistician 33:214–218.

    Article  Google Scholar 

  • Law, A. M., and W. D. Kelton. 2000. Simulation Modeling and Analysis, 3rd ed. New York: McGraw-Hill.

    Google Scholar 

  • Luenberger, D. G. 1969. Optimization by Vector Space Methods. New York: John Wiley and Sons.

    Google Scholar 

  • Lurie, P. M., and M. S. Goldberg. 1998. An approximate method for sampling correlated random variables from partially-specified distributions. Management Science 44:203–218.

    Article  Google Scholar 

  • Mackenzie, G. R. 1994. Approximately maximum-entropy multivariate distributions with specified marginals and pairwise correlations. PhD diss., Department of Decision Sciences, University of Oregon, Eugene, Oregon.

    Google Scholar 

  • Nelsen, R. B. 1999. An Introduction to Copulas. Lecture Notes in Statistics, vol. 139. New York: Springer-Verlag.

    Google Scholar 

  • Nelson, B. L. 2004. Personal communication.

    Google Scholar 

  • Sangwine-Yager, J. R. 1988. Bonnesen-style inequalities for Minkowski relative geometry. Transactions of the American Mathematical Society 307:373–382.

    Article  Google Scholar 

  • Schneider, R. 1993. Convex Bodies: The Brunn-Minkowski Theory. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris 8:229–231.

    Google Scholar 

  • Walker, A. J. 1977. An efficient method for generating discrete random variables with general distributions. ACM Transactions on Mathematical Software 3:253–256.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors for their superb efforts in improving the presentation of this chapter. This work was partially supported by National Science Foundation grants DMI 0400287 and CMMI 0800688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyadip Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Ghosh, S., Henderson, S.G. (2009). Patchwork Distributions. In: Alexopoulos, C., Goldsman, D., Wilson, J. (eds) Advancing the Frontiers of Simulation. International Series in Operations Research & Management Science, vol 133. Springer, Boston, MA. https://doi.org/10.1007/b110059_4

Download citation

Publish with us

Policies and ethics