Skip to main content

Characterization of Synthetic Polyelectrolytes by Capillary Electrophoretic Methods

  • Chapter
Polyelectrolytes with Defined Molecular Architecture I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 165))

Abstract

Capillary electrophoresis has widely contributed to the analysis of biological polyelectrolytes like DNA or proteins. Their behavior in the different electrophoretic separation systems is well understood. However, this knowledge is rather limited in the case of synthetic polyelectrolytes. This paper discusses our results on how it is possible to gain information on size, shape, and mobility from capillary electrophoresis experiments. Capillary gel electrophoresis (CGE) is the most valuable method for size characterization of polyelectrolytes. Different separation principles and sieving media are presented and an optimization concept is evaluated. Capillary zone electrophoresis (CZE) and capillary isoelectric focussing (cIEF) can be used to study the influence of solvent properties such as ionic strength, buffer pH, and temperature on the size and surface charge of polycations, polybetaines, and polyampholytes in free solution. The pH dependence of the mobility can be used for the determination of charge neutrality of the surface. Systematic variations of structural parameters lead to significant changes in electrophoretic behavior. Even the formation of intermolecular associates is easily detectable by CZE. All results are in good agreement with orthogonal classical polyelectrolyte characterization methods which makes capillary electrophoresis a fast and efficient supplement to established methods.

These results have been reported, in part, at the following international symposia: HPCE 2000 (Saarbruecken, Germany), APCE 2000 (Hongkong, PR China), HPCE 2001 (Boston, MA, USA), ANAKON 2001 (Konstanz, Germany), HPCE 2002 (Stockholm, Sweden), ISC 2002 (Leipzig, Germany)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

[ η]:

intrinsic viscosity

λ :

detection wavelength

µ, µ 0 :

electrophoretic mobility; mobility in free solution

µ*:

electrophoretic mobility in gel solution related to mobility in free solution

µ r :

electrophoretic mobility related to internal standard

BGE:

background electrolyte

HDB:

hexadimethrine bromide

M:

molecular mass

PSS:

poly(styrenesulfonate)

PVA:

poly(vinyl alcohol)

PVBC:

poly(vinylbenzyl chloride)

p(VPy):

poly(vinylpyridine)

R g :

radius of gyration

R h :

radius of hydration

T :

temperature

U :

applied voltage

c :

concentration

c *:

threshold concentration

m :

size selectivity (in Capillary Gel Electrophoresis)

pI:

isoelectric point

References

  1. Kuhn R, Hoffstetter-Kuhn S (1993) Capillary electrophoresis: principle and practice. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  2. Engelhardt H, Beck W, Schmitt T (1994) Capillary electrophoresis: methods and potentials. Vieweg, Braunschweig

    Google Scholar 

  3. Weinberger R (1993) Practical capillary electrophoresis. Academic Press, San Diego

    Google Scholar 

  4. Kok WT (2000) Capillary electrophoresis: instrumentation and operation, Chromatographia supplement, vol 51. Vieweg, Braunschweig

    Google Scholar 

  5. Krull I, Stevenson RL, Mistry K, Swartz ME (2000) Capillary electrochromatography and pressurized flow capillary electrochromatography—an introduction. HNB, New York

    Google Scholar 

  6. Bartle KD, Myers P (2001) (eds) Capillary electrochromatography. Royal Society of Chemistry, Cambridge

    Google Scholar 

  7. Deyl Z, Svec F (2001) (eds) Journal of Chromatography Library: Capillary electrochromatography. Elsevier, Amsterdam

    Google Scholar 

  8. Hu S, Dovichi NJ (2002) Anal Chem 74:2833

    Google Scholar 

  9. Rodriguez-Diaz R, Wehr T, Zhu M (1997) Electrophoresis 18:2134

    Google Scholar 

  10. Bello MS, Rezzonico R, Righetti PG (1994) J Chromatogr A 659:199

    Google Scholar 

  11. Cottet H, Gareil P (1997) J Chromatogr A 772:369

    Google Scholar 

  12. Viovy JL, Duke T (1993) Electrophoresis 14:322

    Google Scholar 

  13. Slater GW (1997) In: Heller C (ed) Analysis of nucleic acids by capillary electrophoresis. Vieweg, Braunschweig

    Google Scholar 

  14. Ogston AG (1958) Trans Faraday Soc 54:1754

    Google Scholar 

  15. Tietz D (1988) In: Chrambach A, Dunn MJ, Radola BJ (eds) Evaluation of mobility data obtained from gel electrophoresis: strategies on the computation of particle and gel properties on the basis of the extended Ogston model, Advances in Electrophoresis, vol 2. VCH, Weinheim

    Google Scholar 

  16. Heller C (1997) (ed) Analysis of nucleic acids by capillary electrophoresis. Vieweg, Braunschweig

    Google Scholar 

  17. Schwartz D, Koval M (1989) Nature 338:520

    Google Scholar 

  18. Carlsson C, Larsson A, Jonsson M (1997) In: Heller C (ed) Analysis of nucleic acids by capillary electrophoresis. Vieweg, Braunschweig

    Google Scholar 

  19. Grosche O, Engelhardt H (2000) Adv Polym Sci 150:189

    Google Scholar 

  20. Clos HN, Engelhardt H (1998) J Chromatogr A 802:149

    Google Scholar 

  21. Poli JB, Schure MR (1992) Anal Chem 64:896

    Google Scholar 

  22. Engelhardt H, Cunat-Walter MA (1995) J Chromatogr A 716:27

    Google Scholar 

  23. Dolnik V (1998) Oral presentation at HPCE’98, Orlando

    Google Scholar 

  24. Dolnik V, Gurske WA (1999) Electrophoresis 20:3373

    Google Scholar 

  25. Ferguson KA (1964) Metabolism 13:985

    Google Scholar 

  26. Grubisic Z, Rempp P, Benoit H (1967) J Polym Sci Lett 5:753

    Google Scholar 

  27. Minarik M, Gas B, Kenndler E (1997) Electrophoresis 18:98

    Google Scholar 

  28. Barron AE, Soane DS, Blanch HW (1993) J Chromatogr A 652:31

    Google Scholar 

  29. Baba Y, Ishimura N, Samata K, Tsuhako MJ (1993) J Chromatogr A 653:329

    Google Scholar 

  30. Salas-Solano O, Carrilho E, Kotler L, Miller AW, Goetzinger W, Sosic Z, Karger BL (1998) Anal Chem 70:3996

    Google Scholar 

  31. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  32. Clos HN (1998) PhD thesis, Saarland University, Saarbruecken

    Google Scholar 

  33. Wendler U, Bohrisch J, Jaeger W, Rother G, Dautzenberg H (1998) Macromol Rapid Commun 19:185

    Google Scholar 

  34. Grosche O, Bohrisch J, Wendler U, Jaeger W, Engelhardt H (2000) J Chromatogr A 894:105

    Google Scholar 

  35. Dautzenberg H, Görnitz E, Jaeger W (1998) Macromol Chem Phys 199:1561

    Google Scholar 

  36. Wandrey C, Görnitz E (1995) Polym News 20:377

    Google Scholar 

  37. Bohrisch J, Grosche O, Wendler U, Jaeger W, Engelhardt H (2000) Macromol Chem Phys 201:447

    Google Scholar 

  38. Volk NH (2002) PhD thesis, University of Mainz

    Google Scholar 

  39. Beck W, Engelhardt H (1992) Chromatographia 33:313

    Google Scholar 

Download references

Acknowledgements

Financial support by the DFG as part of the “Schwerpunkt Polyelektrolyte” is gratefully appreciated (EN 104/14–2). We especially thank the Fraunhofer Institut Angewandte Polymerforschung, Golm, Germany (W. Jaeger, J. Bohrisch, U. Wendler, T. Schimmel, K. Sander) and the Johannes-Gutenberg-University, Mainz, Germany (M. Schmidt, N. Volk, D. Vollmer) for cooperation and providing the polyelectrolyte samples. The results summarized here were extracted from the Ph.D. theses of Harald Clos (1998), Oliver Grosche (2001) and Markus Martin (2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Engelhardt .

Editor information

Manfred Schmidt

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelhardt, H., Martin, M. (2004). Characterization of Synthetic Polyelectrolytes by Capillary Electrophoretic Methods. In: Schmidt, M. (eds) Polyelectrolytes with Defined Molecular Architecture I. Advances in Polymer Science, vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b11271

Download citation

  • DOI: https://doi.org/10.1007/b11271

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00528-5

  • Online ISBN: 978-3-540-36433-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics