Skip to main content

Nuclear Decay Induced Excited Spin State Trapping (NIESST)

  • Chapter
Spin Crossover in Transition Metal Compounds II

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 234))

Abstract

Mössbauer Emission Spectroscopy (MES) has been employed in studies of chemical and physical after-effects of the electron capture process 57Co(EC)57Fe in inorganic compounds. The 57Co labelled compounds are used as the Mössbauer source at variable temperatures vs a single-line absorber such as K4[Fe(CN)6]·3H2O kept at room temperature. The recorded ME spectrum yields information on the electronic and molecular structure of species containing the nucleogenic 57Fe in its first nuclear excited state (14.4 keV, τM≈140 ns lifetime). The after-effects observed in this time window refer to changes of charge and spin state, radiolysis products, metal-ligand bond rupture, long-lived metastable spin states and low energy excitations in spin-orbit coupling or Zeeman manifolds.

Long-lived metastable spin states of 57Fe(II) have been observed in time-integral ME spectra of 57Co labelled coordination compounds, the corresponding iron(II) compounds of which are classified as strong-field and intermediate field (spin crossover) compounds. Their lifetimes have been measured using a MES coincidence spectrometer and found, at comparable temperatures, to be very similar to those observed of metastable Fe(II)-HS states after laser excitation (LIESST). The so-called inverse energy gap law, first introduced by Buhks et al. and later applied by A. Hauser to describe the relaxation of metastable LIESST states, also applies to the relaxation of metastable spin states generated by “nuclear decay-induced excited spin state trapping (NIESST)”. We therefore conclude that both phenomena, LIESST after optical excitation and NIESST after nuclear decay, follow the same relaxation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

MAS:

Mössbauer absorption spectroscopy

MES:

Mössbauer emission spectroscopy

TIMES:

Time-integral Mössbauer emission spectroscopy

TDMES:

Time-differential Mössbauer emission spectroscopy

EC:

Electron capture decay

NIESST:

Nuclear decay-induced excited spin state trapping

LIESST:

Light-induced excited spin state trapping

HS:

High spin

LS:

Low spin

τM :

Lifetime of the nuclear excited level involved in the Mössbauer effect (ca. 140 ns in the case of 57Fe)

τL :

(h/2πh)(ΔE)−1, Larmor precession time for nuclear electric quadrupole interaction or nuclear magnetic dipole interaction with hyperfine interaction energy ΔE

τe :

Lifetime of after-effect species resulting from 57Co(EC)57Fe decay

phen:

1.10-Phenanthroline

bipy:

2,2′-Bipyridine

pmi:

2-Pyridinalmethylimine

pic:

2-Picolylamine

ptz:

1-Propyl-tetrazole

terpy:

2,2′:6′,2″-Terpyridine

References

  1. Szilard L, Chalmers TA (1934) Nature 134:462

    Google Scholar 

  2. Tominaga T, Tachikawa E (1981) Modern hot-atom chemistry and its applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Matsuura T (ed) (1984) Hot atom chemistry. Kodanski, Tokyo

    Google Scholar 

  4. Sano H, Gütlich P (1984) In: Matsuura T (ed) Hot atom chemistry. Kodanski, Tokyo, p 265

    Google Scholar 

  5. Spiering H, Alflen M, Gütlich P, Hauser A, Hennen C, Manthe U, Tuczek F (1990) Hyperfine Interact 53:113

    Google Scholar 

  6. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall, London

    Google Scholar 

  7. Gütlich P, Link R, Trautwein AX (1978) Mössbauer spectroscopy and transition metal chemistry. Inorganic Chemistry Concepts Series, no 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Pollak H (1962) Phys Status Solidi 2:270

    Google Scholar 

  9. Friedt JM, Danon J (1980) At Energ Rev 18:4

    Google Scholar 

  10. Gütlich P, Odar S, Fitzsimmons BW, Erickson NE (1968) Radiochim Acta 10:147

    Google Scholar 

  11. Misroch MB, Schramm CJ, Nath A (1976) J Chem Phys 65:1982

    Google Scholar 

  12. Fenger J, Olsen J (1974) J Chem Soc Dalton 319

    Google Scholar 

  13. Adloff JP (1973) Effects chimiques des transformations nucléaires. Report no CRN/CNPA 74-28 and subsequent annual reports. Université de Strasbourg, France

    Google Scholar 

  14. Bonville P, Garcin C, Gerard A, Imbert P, Jehanno G (1981) Phys Rev B23:4293, 4310

    Google Scholar 

  15. Tuczek F, Spiering H, Gütlich P (1990) Hyperfine Interact 62:109

    Google Scholar 

  16. Ensling J, Fitzsimmons BW, Gütlich P, Hasselbach (1970) Angew Chem 9:637

    Google Scholar 

  17. Grimm R, Gütlich P (1983) Lab Rep, Chemistry Dept, University of Mainz

    Google Scholar 

  18. Grimm R, Gütlich P, Kankeleit E, Link R (1977) J Chem Phys 67(12):5491

    Google Scholar 

  19. Ensling J, Fleisch, J, Gütlich P, Fitzsimmons BW (1977) Chem Phys Lett 45(1):22

    Google Scholar 

  20. Sanchez JP, Llabador Y, Friedt JM (1973) J Inorg Nucl Chem 35:2557

    Google Scholar 

  21. Madeja K, König E (1963) J Inorg Nucl Chem 25:377

    Google Scholar 

  22. Baker WA, Bobonich HM (1964) Inorg Chem 3:1184

    Google Scholar 

  23. Ensling J, Gütlich P, Hasselbach KM, Fitzsimmons BW (1976) Chem Phys Lett 42:232

    Google Scholar 

  24. Fleisch J, Gütlich P (1976) Chem Phys Lett 42:237

    Google Scholar 

  25. Fleisch J, Gütlich P (1977) Chem Phys Lett 45:29

    Google Scholar 

  26. Fleisch J, Gütlich P, Köppen H (1980) Radiochem Radioanal Lett 42:279

    Google Scholar 

  27. Gütlich P, Köppen H (1980) J Phys (Paris) 41-C:311

    Google Scholar 

  28. Hennen C (1986) Master’s thesis, University of Mainz, Dept of Chemistry

    Google Scholar 

  29. Wei HH, Ho LZ (1982) Radiochem Radioanal Lett 55:29

    Google Scholar 

  30. Fleisch J, Gütlich P (1977) Chem Phys Lett 45:29

    Google Scholar 

  31. Fleisch J, Gütlich P, Hasselbach KM (1976) Inorg Chim Acta 17:51

    Google Scholar 

  32. Reiff W, Long G (1974) Inorg Chem 13:2150

    Google Scholar 

  33. Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Chem Phys Lett 105:1

    Google Scholar 

  34. Decurtins S, Gütlich P, Hasselbach KM, Spiering H, Hauser A (1985) Inorg Chem 24:2174

    Google Scholar 

  35. Albrecht R, Alflen M, Gütlich P, Kajcsos Z, Schulze R, Spiering H, Tuczek F (1987) Nucl Instrum Methods A257:209

    Google Scholar 

  36. Alflen M, Hennen C, Tuczek F, Spiering H, Gütlich P, Kajcsos Z (1989) Hyperfine Interact 47:115

    Google Scholar 

  37. Hennen C, Alflen M, Spiering H, Gütlich P (1990) Hyperfine Interact 56:1527

    Google Scholar 

  38. Deisenroth S, Hauser A, Spiering H, Gütlich P (1994) Hyperfine Interact 93:1573

    Google Scholar 

  39. Deisenroth S (1996) PhD Thesis, Chemistry Dept, University of Mainz

    Google Scholar 

  40. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed 33:2024

    Google Scholar 

  41. Hauser A (1986) Chem Phys Lett 24:543

    Google Scholar 

  42. Buhks E, Navon G, Bixon M, Jortner J (1980) J Am Chem Soc 102:2918

    Google Scholar 

  43. Hauser A (1995) Comments Inorg Chem 17:17

    Google Scholar 

  44. Sieber R, Decurtins S, Stoeckli-Evans H, Wilson C, Yufit D, Howard JAK, Capelli SC, Hauser A (2000) Chem Eur J 6: 361

    Google Scholar 

  45. Chameko V (2001) In partial fulfilment of the Ph.D. thesis, Univ Mainz, first presented at the Workshop “Molecular Photomagnetism”, Seeheim, 2001

    Google Scholar 

  46. Chameko V, Bron M, Gütlich P, Decurtins S (To be published)

    Google Scholar 

  47. Oshio H, Spiering H, Ksenofontov V, Renz F, Gütlich P (2001) Inorg Chem 40(6):1143

    Google Scholar 

  48. Sato T, Ambe F, Kitazawa T, Sano H, Takeda M (1997) Chem Letters12:1287

    Google Scholar 

  49. Kitazawa T, Gomi Y, Takahashi M, Takeda M, Enomoto M, Miyazaki A, Enoki T (1996) J Mater Chem 6:119

    Google Scholar 

Download references

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Materialwissenschaftliches Forschungszentrum der Universität Mainz, Schott Glas Mainz and the European Community (TMR network No. ERB-FMRX-CT98-0199) is gratefully acknowledged. I wish to express my sincere thanks to my students and coworkers who have contributed to the results discussed in this report. I also wish to thank my colleague Dr. H. Spiering for valuable discussions and critical reading the manuscript.

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Rudolf L. Mößbauer on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Gütlich, P. Nuclear Decay Induced Excited Spin State Trapping (NIESST). In: Spin Crossover in Transition Metal Compounds II. Topics in Current Chemistry, vol 234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b95418

Download citation

  • DOI: https://doi.org/10.1007/b95418

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40396-8

  • Online ISBN: 978-3-540-36774-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics