Skip to main content

Bridging Hemispheres

  • Chapter
  • First Online:
A Brain for Speech

Abstract

The corpus callosum is a large axon tract that transfers information between both hemispheres. I discuss the evolutionary and developmental origin of interhemispheric fibers in mammals, proposing that these connections integrate a divided representation of the sensory and motor fields in both cerebral hemispheres. Furthermore, interhemispheric transmission becomes problematic in species with large brains, as the distance between hemispheres increases and consequently the transmission time delay is larger. This constraint has been proposed to favor hemispheric specialization in species with large brains, in which processing will be more effectively executed in only one hemisphere. Recent evidence indicates that the corpus callosum plays an important role in the coordination and synchronization of both hemispheres during lateralized language processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz F, Montiel J (2003) One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 36:409–420

    Article  PubMed  Google Scholar 

  • Aboitiz F, López J, Montiel J (2003) Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. Biol Res 36:89–99

    Article  PubMed  Google Scholar 

  • Aboitiz F, Scheibel AB, Zaidel E (1992a) Morphometry of the Sylvian fissure and the corpus callosum, with emphasis on sex differences. Brain 115:1521–1541

    Article  PubMed  Google Scholar 

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992b) Fiber composition of the human corpus callosum. Brain Res 598:143–153

    Article  PubMed  Google Scholar 

  • Aggoun-Zouaoui D, Innocenti GM (1994) Juvenile visual callosal axons in kittens display origin- and fate-related morphology and distribution of arbors. Eur J Neurosci 6:1846–1863

    Article  PubMed  Google Scholar 

  • Berbel P, Innocenti GM (1988) The development of the corpus callosum in cats: a light- and electron-microscopic study. J Comp Neurol 276:132–156

    Article  PubMed  Google Scholar 

  • Brunetti E, Maldonado PE, Aboitiz F (2013) Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information. Front Psychol 4:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Caminiti R, Ghaziri H, Galuske R, Hof PR, Innocenti GM (2009) Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc Natl Acad Sci U S A 106:19551–19556

    Article  PubMed  PubMed Central  Google Scholar 

  • Caminiti R, Carducci F, Piervincenzi C, Battaglia-Mayer A, Confalone G, Visco-Comandini F, Pantano P, Innocenti GM (2013) Diameter, length, speed, and conduction delay of callosal axons in macaque monkeys and humans: comparing data from histology and magnetic resonance imaging diffusion tractography. J Neurosci 33:14501–1411

    Article  PubMed  Google Scholar 

  • Chait M, Greenberg S, Arai T, Simon JZ, Poeppel D (2015) Multi-time resolution analysis of speech: evidence from psychophysics. Front Neurosci 9:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    Article  PubMed  Google Scholar 

  • Dorion AA, Chantôme M, Hasboun D, Zouaoui A, Marsault C, Capron C, Duyme M (2000) Hemispheric asymmetry and corpus callosum morphometry: a magnetic resonance imaging study. Neurosci Res 36:9–13

    Article  PubMed  Google Scholar 

  • Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ (2014) Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain 137:1579–1613

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliassen JC, Baynes K, Gazzaniga MS (2000) Anterior and posterior callosal contributions to simultaneous bimanual movements of the hands and fingers. Brain 123:2501–2511

    Article  PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Article  PubMed  Google Scholar 

  • Fothergill T, Donahoo AL, Douglass A, Zalucki O, Yuan J, Shu T, Goodhill GJ, Richards LJ (2014) Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. Cereb Cortex 24:1138–1151

    Article  PubMed  Google Scholar 

  • Harrison KH, Hof PR, Wang SS (2002) Scaling laws in the mammalian neocortex: does form provide clues to function. J Neurocytol 31:289–298

    Article  PubMed  Google Scholar 

  • Hopkins WD, Pilger JF, Storz R, Ambrose A, Hof PR, Sherwood CC (2012) Planum temporale asymmetries correlate with corpus callosum axon fiber density in chimpanzees (Pan troglodytes). Behav Brain Res 234:248–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Houzel JC, Carvalho ML, Lent R (2002) Interhemispheric connections between primary visual areas: beyond the midline rule. Braz J Med Biol Res 35:1441–1453

    Article  PubMed  Google Scholar 

  • Hubel DH (1988) Eye, Brain and Vision. Scientific American Library, New York

    Google Scholar 

  • Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant JL (2016) Natural speech reveals the semantic maps that tile human cerebral cortex. Nature 532:453–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacoboni M, Zaidel E (1999) The crossed-uncrossed difference in simple reaction times to lateralized auditory stimuli is not a measure of interhemispheric transmission time: evidence from the split brain. Exp Brain Res 128:421–424

    Article  PubMed  Google Scholar 

  • Innocenti GM (1981) Growth and reshaping of axons in the establishment of visual callosal connections. Science 212:824–827

    Article  PubMed  Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral Cortex. Volume 5. Sensory Motor Areas and Aspects of Cortical Connectivity. Plenum Press, New York, p 291–354

    Chapter  Google Scholar 

  • Innocenti GM, Bressoud R (2003) Callosal axons and their development. In: Zaidel E, Iacoboni M (eds) The Parallel Brain. Cognitive Neuroscience of the Corpus Callosum. MIT Press, Cambridge, p 11–26

    Google Scholar 

  • Innocenti GM, Fiore L, Caminiti R (1977) Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 4:237–242

    Article  PubMed  Google Scholar 

  • Innocenti GM, Caminiti R, Hof PR (2010) Fiber composition in the planum temporale sector of the corpus callosum in chimpanzee and human. Brain Struct Funct 215:123–128

    Article  PubMed  Google Scholar 

  • Innocenti GM, Vercelli A, Caminiti R (2014) The diameter of cortical axons depends both on the area of origin and target. Cereb Cortex 24:2178–2188

    Article  PubMed  Google Scholar 

  • Innocenti GM, Dyrby TB, Andersen KW, Rouiller EM, Caminiti R (2016) The crossed projection to the striatum in two species of Monkey and in Humans: behavioral and evolutionary significance. Cereb Cortex pii: bhw161 [EPub ahead of Print]

    Article  Google Scholar 

  • Johnston JM, Vaishnavi SN, Smyth MD, Zhang D, He BJ, Zempel JM, Shimony JS, Snyder AZ, Raichle ME (2008) Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J Neurosci 28:6453–6458

    Article  PubMed  PubMed Central  Google Scholar 

  • Josse G, Seghier ML, Kherif F, Price CJ (2008) Explaining function with anatomy: language lateralization and corpus callosum size. J Neurosci 28:14132–14139

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz MJ, Lasek RJ, Silver J (1983) Ontophyletics of the nervous system: development of the corpus callosum and evolution of axon tracts. Proc Natl Acad Sci U S A 80:5936–5940

    Article  PubMed  PubMed Central  Google Scholar 

  • Koppel H, Innocenti GM (1983) Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat. Neurosci Lett 41:33–40

    Article  PubMed  Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205

    Article  PubMed  Google Scholar 

  • LaMantia AS, Rakic P (1990a) Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. J Comp Neurol 291:520–537

    Article  PubMed  Google Scholar 

  • LaMantia AS, Rakic P (1990b) Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10:2156–2175

    PubMed  Google Scholar 

  • Lindwall C, Fothergill T, Richards LJ (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17:3–14

    Article  PubMed  Google Scholar 

  • Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW (2010) When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 52:43–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Macleod CM (1992) The Stroop task: the “gold standard” of attentional measures. J Exp Psychol: General 121:12–14

    Article  Google Scholar 

  • Mihrshahi R (2006) The corpus callosum as an evolutionary innovation. J Exp Zool B Mol Dev Evol 306:8–17

    Article  PubMed  Google Scholar 

  • Mohr B, Pulvermüller F, Zaidel E (1994) Lexical decision after left, right and bilateral presentation of function words, content words and non-words: evidence for interhemispheric interaction. Neuropsychologia 32:105–124

    Article  PubMed  Google Scholar 

  • Newell FW (1989) Franciscus Cornelis Donders (1818–1889). Am J Ophthalm 107:691–693

    Article  Google Scholar 

  • Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I, Malach R (2008) Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat Neurosci 11:1100–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivares R, Michalland S, Aboitiz F (2000) Cross-species and intraspecies morphometric analysis of the corpus callosum. Brain Behav Evol 55:37–43

    Article  PubMed  Google Scholar 

  • Olivares R, Montiel J, Aboitiz F (2001) Species differences and similarities in the fine structure of the mammalian corpus callosum. Brain Behav Evol 57:98–105

    Article  PubMed  Google Scholar 

  • Paul LK, Van Lancker-Sidtis D, Schieffer B, Dietrich R, Brown WS (2003) Communicative deficits in agenesis of the corpus callosum: nonliteral language and affective prosody. Brain Lang 85:313–324

    Article  PubMed  Google Scholar 

  • Peiker C, Wunderle T, Eriksson D, Schmidt A, Schmidt KE (2013) An updated midline rule: visual callosal connections anticipate shape and motion in ongoing activity across the hemispheres. J Neurosci 33:18036–18046

    Article  PubMed  PubMed Central  Google Scholar 

  • Peiker I, David N, Schneider TR, Nolte G, Schöttle D, Engel AK (2015) Perceptual integration deficits in autism spectrum disorders are associated with reduced interhemispheric gamma-band coherence. J Neurosci 35:16352–16361

    Article  PubMed  Google Scholar 

  • Phillips KA, Schaeffer JA, Hopkins WD (2013) Corpus callosal microstructure influences intermanual transfer in chimpanzees. Front Syst Neurosci 7:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips KA, Stimpson CD, Smaers JB, Raghanti MA, Jacobs B, Popratiloff A, Hof PR, Sherwood CC. (2015) The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry. Proc Biol Sci 282:20151535. Erratum in: Proc Biol Sci. 2016, 283:1826. Proc Biol Sci. 2015, 282:1819

    Google Scholar 

  • Poffenberger AT (1912) Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Arch Psychol 23:1–73

    Google Scholar 

  • Ramón y Cajal S (1898) Estructura del quiasma óptico y teoria general de los entrecruzamientos nerviosos. Rev Trim Micrograf 3:2–18

    Google Scholar 

  • Ramón y Cajal S (2006) Recuerdos de mi Vida. Crítica Editorial, Barcelona

    Google Scholar 

  • Rehmel JL, Brown WS, Paul LK (2016) Proverb comprehension in individuals with agenesis of the corpus callosum. Brain Lang 160:21–29

    Article  PubMed  Google Scholar 

  • Richards LJ (2002) Surrounded by Slit–how forebrain commissural axons can be led astray. Neuron 33:153–155

    Article  PubMed  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4:331–343

    Article  PubMed  Google Scholar 

  • Sammler D, Kotz SA, Eckstein K, Ott DV, Friederici AD (2010) Prosody meets syntax: the role of the corpus callosum. Brain 133:2643–2655

    Article  PubMed  Google Scholar 

  • Shen K, Mišić B, Cipollini BN, Bezgin G, Buschkuehl M, Hutchison RM, Jaeggi SM, Kross E, Peltier SJ, Everling S, Jonides J, McIntosh AR, Berman MG (2015) Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc Natl Acad Sci U S A 112:6473–6478

    Article  PubMed  PubMed Central  Google Scholar 

  • Sisti HM, Geurts M, Gooijers J, Heitger MH, Caeyenberghs K, Beets IA, Serbruyns L, Leemans A, Swinnen SP (2012) Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learn Mem 19:351–357

    Article  PubMed  Google Scholar 

  • Stefanko SZ (1980) Fasciculus callosus longitudinalis (bundle of Probst) and its relation to the corpus callosum. Patol Pol 31:263–272

    PubMed  Google Scholar 

  • Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, Friederici AD, Mulert C (2014) Conscious auditory perception related to long-range synchrony of gamma oscillations. Neuroimage 100:435–443

    Article  PubMed  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  • Suárez R, Gobius I, Richards LJ (2014) Evolution and development of interhemispheric connections in the vertebrate forebrain. Front Hum Neurosci 8:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasch J (1954) Size, distribution, and number of fibres in the human corpus callosum. Anat Rec 119:119–135

    Article  PubMed  Google Scholar 

  • Turk AA, Brown WS, Symington M, Paul LK (2010) Social narratives in agenesis of the corpus callosum: linguistic analysis of the Thematic Apperception Test. Neuropsychologia 48:43–50

    Article  PubMed  Google Scholar 

  • Unni DK, Piper M, Moldrich RX, Gobius I, Liu S, Fothergill T, Donahoo AL, Baisden JM, Cooper HM, Richards LJ (2012) Multiple Slits regulate the development of midline glial populations and the corpus callosum. Dev Biol 365:36–49

    Article  PubMed  Google Scholar 

  • Wahl M, Lauterbach-Soon B, Hattingen E, Hübers A, Ziemann U (2015) Callosal anatomical and effective connectivity between primary motor cortices predicts visually cued bimanual temporal coordination performance. Brain Struct Funct 221:3427–3443

    Article  PubMed  Google Scholar 

  • Wang SS, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Buckner RL, Liu H (2014) Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci 34:12341–12352

    Article  PubMed  PubMed Central  Google Scholar 

  • Witelson SF (1985) The brain connection: the corpus callosum is larger in left-handers. Science 229:665–668

    Article  PubMed  Google Scholar 

  • Woelfle R, Grahn JA (2013) Auditory and visual interhemispheric communication in musicians and non-musicians. PLoS One 8:e84446

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidel E, Iacoboni M (2003) Introduction: Poffenberger’s simple reaction time paradigm for measuring interhemispheric transfer time. In: Zaidel E, Iacoboni M (eds) The Parallel Brain. Cognitive Neuroscience of the Corpus Callosum. MIT Press, Cambridge, p 1–7

    Google Scholar 

  • Zimmer C (2004) Soul Made Flesh. The Discovery of the Brain – and How it Changed the World. Free Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Aboitiz, F. (2017). Bridging Hemispheres. In: A Brain for Speech. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-54060-7_5

Download citation

Publish with us

Policies and ethics