Skip to main content

Structuring Intelligence: The Role of Hierarchy, Modularity and Learning in Generating Intelligent Behaviour

  • Chapter
The Complex Mind
  • 239 Accesses

Abstract

Scientific social trends ranging from dynamical systems theories to postmodernism have called into question whether the apparent hierarchical structure of naturally occurring intelligent behaviour actually derives from structured intelligence. These questions and perspectives overlook substantial evidence from both neuroscience and biology more broadly that behaviour really is organised utilising both modularity and hierarchy. In mammal brains, modular structure starts from cellular composition, and continues conspicuously through the existence of discrete regions with differing processing capacities (Badre, 2008). We can discriminate a brain region by its consistent and regular pattern of nerve-cell type and intercell connectivity, while these same features vary between regions. Hierarchy derives from the interaction between these modules. This is particularly apparent when we can produce complex movements such as the production of particular words (Mateer et al., 1990) or grasping and transfer gestures (Graziano et al., 2002) by directly stimulating single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science, 291: 1748–53.

    Article  Google Scholar 

  • Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5): 193–200.

    Article  Google Scholar 

  • Baerends, G. P. (1976). The functional organisation of behaviour. Animal Behaviour, 24: 726–38.

    Article  Google Scholar 

  • Barrickman, N. L., Bastian, M. L., Isler, K. and van Schaik, C. P. (2008). Life history costs and benefits of encephalization: A comparative test using data from long-term studies of primates in the wild. Journal of Human Evolution, 54(5): 568–90.

    Article  Google Scholar 

  • Barsalou, L. W., Breazeal, C. and Smith, L. B. (2007). Cognition as coordinated non-cognition. Cognitive Processing, 8(2): 79–91.

    Article  Google Scholar 

  • Bates, E. (1999). Plasticity, localization and language development. In S. Broman and J. M. Fletcher (eds), The changing nervous system: Neurobehavioral consequences of early brain disorders. Oxford: Oxford University Press, pp. 214–53.

    Google Scholar 

  • Borenstein, E., Meilijson, I. and Ruppin, E. (2006). The effect of phenotypic plasticity on evolution in multipeaked fitness landscapes. Journal of Evolutionary Biology, 19(5): 1555–70.

    Article  Google Scholar 

  • Botvinick, M. M. (2007). Multilevel structure in behaviour and in the brain: A model of Fuster’s hierarchy. Philosophical Transactions of the Royal Society, B — Biology, 362(1485): 1615–26.

    Article  Google Scholar 

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2: 14–23.

    Article  Google Scholar 

  • Brooks, R. A. (1991a). Intelligence without reason. In Proceedings of the 1991 International Joint Conference on Artificial Intelligence, Sydney, pp. 569–95.

    Google Scholar 

  • Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence, 47: 139–59.

    Article  Google Scholar 

  • Bruner, J. S. (1982). The organisation of action and the nature of adult-infant transaction. In M. von Cranach and R. Harré (eds), The analysis of action. Cambridge: Cambridge University Press, pp. 313–28.

    Google Scholar 

  • Bryson, J. J. (2000a). Cross-paradigm analysis of autonomous agent architecture. Journal of Experimental and Theoretical Artificial Intelligence, 12(2): 165–90.

    Article  Google Scholar 

  • Bryson, J. J. (2000b). Hierarchy and sequence vs. full parallelism in reactive action selection architectures. In From animals to animats 6 (SAB00). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bryson, J. J. (2001). Intelligence by Design: Principles of Modularity and Coordination for Engineering Complex Adaptive Agents. PhD thesis, MIT, Department of EECS, Cambridge, MA. AI Technical Report 2001–003.

    Google Scholar 

  • Bryson, J. J. (2003). The behavior-oriented design of modular agent intelligence. In R. Kowalszyk, J. P. Müller, H. Tianfield and R. Unland (eds), Agent Technologies, Infrastructures, Tools, and Applications for e-Services. Berlin: Springer, pp. 61–76.

    Chapter  Google Scholar 

  • Bryson, J. J. (2009). Representations underlying social learning and cultural evolution. Interaction Studies, 10(1): 77–100.

    Article  Google Scholar 

  • Bryson, J. J., Lowe, W., Bilovich, A. and Čače, I. (2009). Factors limiting the biological evolution of cultural accumulation. Submitted.

    Google Scholar 

  • Bryson, J. J. and McGonigle, B. (1998). Agent architecture as object oriented design. In M. P. Singh, A. S. Rao, M. J. and Wooldridge (eds), The Fourth International Workshop on Agent Theories, Architectures, and Languages (ATAL97), Providence, RI: Springer, pp. 15–30.

    Chapter  Google Scholar 

  • Buckley, C. and Steele, J. (2002). Evolutionary ecology of spoken language: Co-evolutionary hypotheses are testable. World Archaeology, 34(1): 26–46.

    Article  Google Scholar 

  • Byrne, R. W. (1999). Imitation without intentionality. Using string parsing to copy the organization of behaviour. Animal Cognition, 2(2): 63–72.

    Article  Google Scholar 

  • Byrne, R. W. and Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Brain and Behavioral Sciences, 21(5): 667–721.

    Google Scholar 

  • Campàs, O., Mallarino, R., Herrel, A., Abzhanov, A. and Brenner, M. P. (2010). Scaling and shear transformations capture beak shape variation in Darwin’s finches. Proceedings of the National Academy of Sciences, 107(8): 3356–60.

    Article  Google Scholar 

  • Carruthers, P. (2003). The cognitive functions of language. Brain and Behavioral Sciences, 25(6): 657–74.

    Google Scholar 

  • Carruthers, P. (2005). The case for massively modular models of mind. In R. Stainton (ed.), Contemporary debates in cognitive science. Hoboken, NJ: Wiley-Blackwell.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (2000). Linguistics and brain science. In A. Marantz, Y. Miyashita and W. O’Neil, (eds), Image, language, brain: Papers from the first mind articulation project symposium. Cambridge, MA: MIT Press, pp. 13–28.

    Google Scholar 

  • Davelaar, E. J. (2007). Sequential retrieval and inhibition of parallel (re)activated representations: A neurocomputational comparison of competitive queuing and resampling models. Adaptive Behavior, 15(1): 51–71.

    Article  Google Scholar 

  • Dawkins, R. (1976). Hierarchical organisation: A candidate principle for ethology. In P. P. G. Bateson and R. A. Hinde (eds), Growing points in ethology. Cambridge, Cambridge University Press, pp. 7–54.

    Google Scholar 

  • Dawkins, R. (1997). Climbing mount improbable. New York: W. W. Norton & Co.

    Google Scholar 

  • Donnai, D. and Karmiloff-Smith, A. (2000). Williams Syndrome: From genotype through to the cognitive phenotype. American Journal of Medical Genetics, 97(2): 164–71.

    Article  Google Scholar 

  • Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D. and Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fine, S., Singer, Y. and Tishby, N. (1998). The hierarchical hidden Markov model: Analysis and applications. Machine Learning, 32(1): 41–62.

    Article  Google Scholar 

  • Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: Bradford Books, MIT Press.

    Google Scholar 

  • Foster, D. J. and Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084): 680–3.

    Article  Google Scholar 

  • Gallistel, C., Brown, A. L., Carey, S., Gelman, R. and Keil, F. C. (1991). Lessons from animal learning for the study of cognitive development. In S. Carey and R. Gelman (eds), The epigenesis of mind. Hillsdale, NJ: Lawrence Erlbaum, pp. 3–36.

    Google Scholar 

  • Gardner, M. and Heyes, C. (1998). Splitting lumping and priming. Brain and Behavioral Sciences, 21(5): 695.

    Article  Google Scholar 

  • Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5): 616–65.

    Google Scholar 

  • Goldfield, E. C. (1995). Emergent forms: Origins and early development of human action and perception. Oxford: Oxford University Press.

    Google Scholar 

  • Graziano, M. S. A., Taylor, C. S. R. and Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34: 841–51.

    Article  Google Scholar 

  • Greenfield, P. M. (1991). Language, tools and brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Brain and Behavioral Sciences, 14: 531–95.

    Article  Google Scholar 

  • Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68(3): 394–412.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7: 1–52.

    Article  Google Scholar 

  • Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10): 993–1001.

    Article  Google Scholar 

  • Hendriks-Jansen, H. (1996). Catching ourselves in the act: Situated activity, interactive emergence, evolution, and human thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Henson, R. N. A., Norris, D. G., Page, M. P. A. and Baddeley, A. D. (1996). Unchained memory: Error patterns rule out chaining model of immediate serial recall. Quarterly Journal of Experimental Psychology, 49(1): 80–115.

    Article  Google Scholar 

  • Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1: 495–502.

    Google Scholar 

  • Hull, C. (1943). Principles of behaviour: An introduction to behaviour theory. New York: D. Appleton-Century Company.

    Google Scholar 

  • Jorion, P. J. M. (1998). A methodological behaviourist model for imitation. Brain and Behavioral Sciences, 21(5): 695.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive change. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kauffman, T., Theoret, H. and Pascual-Leone, A. (2002). Braille character discrimination in blindfolded human subjects. Neuroreport, 13(5): 571–4.

    Article  Google Scholar 

  • Kelly, K. (1995). Out of control: The new biology of machines, social systems, and the economic world. Boston: Addison-Wesley Longman.

    Google Scholar 

  • Kelso, J. S. (1995). Dynamic patterns: the self-organization of brain and behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirschner, M. W., Gerhart, J. C. and Norton, J. (2006). The plausibility of life. New Haven, CT: Yale University Press.

    Google Scholar 

  • Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (ed.), Cerebral mechanisms in behavior. New York: John Wiley & Sons.

    Google Scholar 

  • Lefebvre, L., Reader, S. M. and Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63(4): 233–46.

    Article  Google Scholar 

  • Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1): 145–56.

    Article  Google Scholar 

  • Mac Aogáin, E. (1998). Imitation without attitudes. Brain and Behavioral Sciences, 21(5): 696–7.

    Article  Google Scholar 

  • Maes, P. (1991). A bottom-up mechanism for behavior selection in an artificial creature. In J-A. Meyer and S. Wilson, (eds), From animals to animats. Cambridge, MA: MIT Press, pp. 478–85.

    Google Scholar 

  • Mateer, C. A., Rapport II, R. L. and Polly, D. D. (1990). Electrical stimulation of the cerebral cortex in humans. In A. A. Boulton, G. B. Baker and M. Hiscock (eds), Neuropsychology, vol. 17 of Neuromethods. Clifton, NJ: Humana Press.

    Google Scholar 

  • Maynard Smith, J. (1987). When learning guides evolution. Nature, 329: 761–2.

    Article  Google Scholar 

  • McClelland, J. L., McNaughton, B. L. and O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3): 419–57.

    Article  Google Scholar 

  • McDougall, W. (1923). Outline of psychology. London: Methuen.

    Google Scholar 

  • McGonigle, B. O. and Chalmers, M. (1996). The ontology of order. In L. Smith (ed.), Critical readings on Piaget. London: Routledge, ch. 14.

    Google Scholar 

  • Metta, G., Fitzpatrick, P. and Natale, L. (2006). YARP: Yet another robot platform. International Journal on Advanced Robotics Systems, 3(1): 43–8.

    Google Scholar 

  • Minsky, M. and Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

    Google Scholar 

  • Müller, G. B. (2008). Evo-devo as a discipline. In A. Minelli and G. Fusco (eds.) Evolving Pathways: Key Themes in Evolutionary Developmental Biology Cambridge: Cambridge University Press, pp 5–30.

    Chapter  Google Scholar 

  • Myung, J., Forster, M. R. and Browne, M. W. (2000). Special issue on model selection. Journal of Mathematical Psychology, 44(1).

    Google Scholar 

  • Nehmzow, U., Smithers, T. and McGonigle, B. O. (1993). Increasing behavioural repertoire in a mobile robot. In From animals to animats 2: (SAB ’92). Cambridge, MA: MIT Press, pp. 291–7.

    Google Scholar 

  • Newell, A. and Simon, H. A. (1972). Human problem solving. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Paenke, I., Sendhoff, B. and Kawecki, T. J. (2007). Influence of plasticity and learning on evolution under directional selection. The American Naturalist, 170(2): 47–58.

    Article  Google Scholar 

  • Partington, S. J. and Bryson, J. J. (2005). The behavior oriented design of an unreal tournament character. In T. Panayiotopoulos, J. Gratch, R. Aylett, D. Ballin, P. Olivier and T. Rist (eds), The Fifth International Working Conference on Intelligent Virtual Agents, Kos, Greece. New York: Springer, pp. 466–77.

    Google Scholar 

  • Paul, C. (2004). Morphology and computation. In From animals to animats 8 (SAB ’04). Los Angeles. Cambridge, MA, pp. 33–8.

    Google Scholar 

  • Pfeifer, R. (ed.) (1999). Dynamics, morphology, and materials in the emergence of cognition. New York: Springer.

    Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.

    Book  Google Scholar 

  • Port, R. F. and van Gelder, T. (eds) (1995). Mind as motion: Explorations in the dynamics of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Prescott, T. J., Bryson, J. J. and Seth, A. K. (2007). Modelling natural action selection: An introduction to the theme issue. Philosophical Transactions of the Royal Society, B — Biology, 362(1485): 1521–9.

    Article  Google Scholar 

  • Redgrave, P., Prescott, T. J. and Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 89: 1009–23.

    Article  Google Scholar 

  • Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7: 17–42.

    Article  Google Scholar 

  • Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2: 1019–25.

    Article  Google Scholar 

  • Rogers, T. T. and McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rutte, C. and Taborsky, M. (2007). The influence of social experience on cooperative behaviour of rats (Rattus norvegicus): Direct versus generalized reciprocity. Behavioral Ecology and Sociobiology, 62(4): 499–505.

    Article  Google Scholar 

  • Salthouse, T. A. (1986). Perceptual, cognitive, and motoric aspects of transcription typing. Psychological Bulletin, 99(3): 303–319.

    Article  Google Scholar 

  • Seth, A. K. (2007). The ecology of action selection: Insights from artificial life. Philosophical Transactions of the Royal Society, B — Biology, 362(1485): 1545–58.

    Article  Google Scholar 

  • Shanahan, M. P. (2005). Global access, embodiment, and the conscious subject. Journal of Consciousness Studies, 12(12): 46–66.

    Google Scholar 

  • Skinner, B. F. (1935). The generic nature of the concepts of stimulus and response. Journal of General Psychology, 12: 40–65.

    Article  Google Scholar 

  • Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In D. Gentner and S. Goldin-Meadow (eds), Advances in the investigation of language and thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sperber, D. and Hirschfeld, L. (2006). Culture and modularity. In P. Carruthers, S. Laurence and S. Stich (eds), The innate mind: Culture and cognition, vol. 2. Oxford: Oxford University Press, pp. 149–64.

    Google Scholar 

  • Sterelny, K. (2007). Dawkins versus Gould: Survival of the fittest. Cambridge: Icon.

    Google Scholar 

  • Teyler, T. J. and Discenna, P. (1986). The hippocampal memory indexing theory. Behavioral Neuroscience, 100: 147–54.

    Article  Google Scholar 

  • Thelen, E. and Smith, L. B. (1994). A dynamical systems approach to development of cognition and action. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thomson, K. R., Pennock, C., List, T. and DiPirro, J. (2004). Artificial intelligence in computer graphics: A constructionist approach. ACMSIGGRAPH Computer Graphics, 38(1): 26–30.

    Article  Google Scholar 

  • Tinbergen, N. (1951). The study of instinct. Oxford: Clarendon Press.

    Google Scholar 

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, series 2, 42(1936–37): 230–65.

    Google Scholar 

  • Vereijken, B. and Whiting, H. T. A. (1998). Hoist by their own petard: The constraints of hierarchical models. Brain and Behavioral Sciences, 21(5): 695.

    Article  Google Scholar 

  • West, S. A., Griffin, A. S. and Gardner, A. (2007). Evolutionary explanations for cooperation. Current Biology, 17: R661–R672.

    Article  Google Scholar 

  • Winslow, B. B., Takimoto-Kimura, R. and Burke, A. C. (2007). Global patterning of the vertebrate mesoderm. Developmental Dynamics, 236(9): 2371–81.

    Article  Google Scholar 

  • Wolpert, D. H. (1996). The existence of a priori distinctions between learning algorithms. Neural Computation, 8(7): 1391–1420.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 2012 Joanna J. Bryson

About this chapter

Cite this chapter

Bryson, J.J. (2012). Structuring Intelligence: The Role of Hierarchy, Modularity and Learning in Generating Intelligent Behaviour. In: McFarland, D., Stenning, K., McGonigle-Chalmers, M. (eds) The Complex Mind. Palgrave Macmillan, London. https://doi.org/10.1057/9780230354456_7

Download citation

Publish with us

Policies and ethics