Skip to main content

Detection and Quantification of Coronary Calcium With Electron Beam CT

  • Chapter
CT of the Heart

Abstract

Electron beam computed tomography (EBCT) employs well-known computed tomography technology. However, in distinction to other CT machines, no mechanical parts are moved. Whereas in usual CT machines, the distance between cathode and anode is very short, it measures approx 9 ft in EBCT. The electron beam, which produces the X-rays by striking the anode, is steered over this distance by an electromagnetic deflection system. The latest generation of EBCT machines (eSpeed™, GE Imatron) achieves an image acquisition time of only 30 ms, which is sufficient to freeze the motion of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15: 827–832.

    Article  PubMed  CAS  Google Scholar 

  2. Erbel R, Moshage W. Tätigkeitsbericht Arbeitsgruppe Elektro-nenstrahltomographie. Z Kardiol 1999;88:459–465.

    Google Scholar 

  3. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. New Engl J Med 1998;339:1972–1978.

    Article  PubMed  CAS  Google Scholar 

  4. Hong C, Becker CR, Schoepf UJ, et al. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 2002;223:474–480.

    Article  PubMed  Google Scholar 

  5. Schmermund A, Erbel R. Current perspective: unstable coronary plaque and its relation to coronary calcium. Circulation 2001;104:1682–1687.

    Article  PubMed  CAS  Google Scholar 

  6. Wexler L, Brundage B, Crouse J, et al. Coronary artery calcium: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association. Circulation 1996;94:1175–1192.

    PubMed  CAS  Google Scholar 

  7. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000;36:326–340.

    Article  PubMed  CAS  Google Scholar 

  8. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–2162.

    PubMed  CAS  Google Scholar 

  9. Schmermund A, Denktas AE, Rumberger JA, et al. Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: comparison with cardiac risk factors and radionuclide perfusion imaging. J Am Coll Cardiol 1999;34:777–786.

    Article  PubMed  CAS  Google Scholar 

  10. Proudfit WL, Bruschke VG, Sones FM, Jr. Clinical course of patients with normal or slightly or moderately abnormal coronary arteriograms: 10-year follow-up of 521 patients. Circulation 1980;62: 712–717.

    PubMed  CAS  Google Scholar 

  11. Emond M, Mock MB, Davis KB, et al. Long-term survival of medically treated patients in the Coronary Artery Surgery Study (CASS) Registry. Circulation 1994;90:2645–2657.

    PubMed  CAS  Google Scholar 

  12. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–1364.

    PubMed  CAS  Google Scholar 

  13. Burke AP, Taylor A, Farb A, Malcom GT, Virmani R. Coronary calcification: insights from sudden coronary death victims. Z Kardiol 2000;89(Suppl 2):49–53.

    Article  PubMed  Google Scholar 

  14. Schmermund A, Schwartz RS, Adamzik M, et al. Coronary atherosclerosis in unheralded sudden coronary death under age fifty: histopathologic comparison with “healthy” subjects dying out of hospital. Atherosclerosis 2001;155:499–508.

    Article  PubMed  CAS  Google Scholar 

  15. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001;103:934–940.

    PubMed  CAS  Google Scholar 

  16. Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105:297–303.

    Article  PubMed  Google Scholar 

  17. Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling. Mechanisms and clinical implications. Circulation 2000;102: 1186–1191.

    PubMed  CAS  Google Scholar 

  18. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002;106:2200–2206.

    Article  PubMed  Google Scholar 

  19. Rasheed Q, Nair R, Sheehan H, Hodgson J McB. Correlation of intracoronary ultrasound plaque characteristics in atherosclerotic coronary artery disease patients with clinical variables. Am J Cardiol 1994;73:753–758.

    Article  PubMed  CAS  Google Scholar 

  20. Mintz GS, Pichard AD, Popma JJ, et al. Determinants and correlates of target lesion calcium in coronary artery disease: a clinical, angiographic and intravascular ultrasound study. J Am Coll Cardiol 1997;29:268–274.

    Article  PubMed  CAS  Google Scholar 

  21. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 2001;21:1618–1622.

    Article  PubMed  CAS  Google Scholar 

  22. Bocksch WG, Schartl M, Beckmann SH, Dreysse S, Paeprer H. Intravascular ultrasound imaging in patients with acute myocardial infarction: comparison with chronic stable angina pectoris. Coron Artery Dis 1994;5:727–735.

    PubMed  CAS  Google Scholar 

  23. de Feyter PJ, Ozaki Y, Baptista J, et al. Ischemia-related lesion characteristics in patients with stable or unstable angina. A study with intracoronary angioscopy and ultrasound. Circulation 1995;92: 1408–1413.

    PubMed  Google Scholar 

  24. Abizaid AS, Mintz GS, Abizaid A, et al. One-year follow-up after intravascular-ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J Am Coll Cardiol 1999;34: 707–715.

    Article  PubMed  CAS  Google Scholar 

  25. Laudon DA, Vukov LF, Breen JF, Rumberger JA, Wollan PC, Sheedy PF II. Use of electron-beam computed tomography in the evaluation of chest pain patients in the emergency department. Ann Emerg Med 1999;33: 15–21.

    Article  PubMed  CAS  Google Scholar 

  26. McLaughlin VV, Balogh T, Rich S. Utility of electron beam computed tomography to stratify patients presenting to the emergency room with chest pain. Am J Cardiol 1999;84:327–328.

    Article  PubMed  CAS  Google Scholar 

  27. Georgiou D, Budoff MJ, Kaufer E, Kennedy JM, Lu B, Brundage BH. Screening patients with chest pain in the emergency department using electron beam tomography: a follow-up study. J Am Coll Cardiol 2001;38: 105–110.

    Article  PubMed  CAS  Google Scholar 

  28. Detrano R, Hsiai T, Wang S, et al. Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 1996;27:285–290.

    Article  PubMed  CAS  Google Scholar 

  29. Keelan PC, Bielak LF, Ashai K, et al. Long-term prognostic value of coronary calcification detected by EBCT in patients undergoing coronary angiography. Circulation 2001;104:412–417.

    Article  PubMed  CAS  Google Scholar 

  30. Möhlenkamp S, Lehman N, Schmermund A, Grönemeyer D, Seibel R, Erbel R. Electron beam CT-based coronary calcium quantities predict future hard events in symptomatic males with advanced coronary artery disease—a 5 year follow-up study. Eur Heart J 2003;92:845–854.

    Article  CAS  Google Scholar 

  31. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD. Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 2000;36:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  32. Raggi P, Callister TQ, Cooil B, et al. Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 2000;101:850–855.

    PubMed  CAS  Google Scholar 

  33. Wong ND, Hsu JC, Detrano RC, et al. Coronary artery calcium evaluation by EBCT and its relation to new cardiovascular events. Am J Cardiol 2000;86:495–498.

    Article  PubMed  CAS  Google Scholar 

  34. Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults [published errata in Circulation 2000;101:697 and Circulation 2000;101:1355]. Circulation 1999;99:2633–2638.

    PubMed  CAS  Google Scholar 

  35. Park R, Detrano R, Xiang M, et al. Combined use of computed tomography coronary calcium scores and C-reactive protein levels in predicting cardiovascular events in nondiabetic individuals. Circulation 2002;106: 2073–2077.

    Article  PubMed  CAS  Google Scholar 

  36. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low-to intermediate-risk adults. Circulation 2003;107: 2571–2576.

    Article  PubMed  Google Scholar 

  37. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228:826–833.

    Article  PubMed  Google Scholar 

  38. Wayhs R, Zelinger AB, Raggi P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 2002;9:225–230.

    Article  Google Scholar 

  39. Vliegenthart R, Oei HH, Breteler MM, et al. Coronary calcification is a strong predictor of all-cause and cardiovascular mortality in elderly. Am Heart Association Scientific Sessions 2002 (Abstract no. 3651).

    Google Scholar 

  40. Vliegenthart R. Coronary calcification and the risk of cardiovascular disease. An epidemiologic study. PhD Thesis. Thoraxcentre Rotterdam, Netherlands, March 19, 2003.

    Google Scholar 

  41. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  42. Schmermund A, Baumgart D, Möhlenkamp S, et al. Natural history and topographic pattern of progression of coronary calcification in symptomatic patients: an electron-beam CT study. Arterioscler Thromb Vasc Biol 2001;21:421–426.

    PubMed  CAS  Google Scholar 

  43. Greenland P, Smith SC, Grundy SN. Current perspective: Improving coronary heart disease risk assessment in asymptomatic people. Role of traditional risk factors and noninvasive cardiovascular tests. Circulation 2001;104:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  44. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002;106: 3143–3421.

    Google Scholar 

  45. De Backer G, Ambrosioni E, Borch-Johnsen K, et al. Executive Summary. European guidelines on cardiovascular disease prevention in clinical practice. Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. Eur Heart J 2003;24:1601–1610.

    Article  PubMed  Google Scholar 

  46. Rumberger JA, Sheedy PF, Breen JF, Schwartz RS. Electron beam computed tomographic calcium score cutpoints and severity of associated angiographic lumen stenosis. J Am Coll Cardiol 1997;29: 1542–1548.

    Article  PubMed  CAS  Google Scholar 

  47. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 1999; 74:243–252.

    Article  PubMed  CAS  Google Scholar 

  48. Hoff JA, Chomka EV, Krainik AJ, et al. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 2001;87:1335–1339.

    Article  PubMed  CAS  Google Scholar 

  49. Schmermund A, Erbel R, Silber S. Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2,030 persons with no symptoms of coronary artery disease. Am J Cardiol 2002;90: 168–173.

    Article  PubMed  CAS  Google Scholar 

  50. Adamzik M, Schmermund A, Reed JE, Adamzik S, Behrenbeck T, Sheedy PF 2nd. Comparison of two different software systems for electron-beam CT-derived quantification of coronary calcification. Invest Radiol 1999;34: 767–773.

    Article  PubMed  CAS  Google Scholar 

  51. Achenbach S, Ropers D, Möhlenkamp S, et al. Variability of repeated coronary artery calcification measurements by electron beam tomography. Am J Cardiol 2001;87:210–213.

    Article  PubMed  CAS  Google Scholar 

  52. Raggi P, Cooil B, Shaw LJ, et al. Progression of coronary calcium on serial electron beam tomographic scanning is greater in patients with future myocardial infarction. Am J Cardiol 2003;92: 827–829.

    Article  PubMed  Google Scholar 

  53. Arad Y, Roth M, Newstein D, Guerci A. Coronary calcification, coronary disease risk factors, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. Hotline Session, ACC 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press, Inc., Totowa, NJ

About this chapter

Cite this chapter

Schmermund, A., Möhlenkamp, S., Erbel, R. (2005). Detection and Quantification of Coronary Calcium With Electron Beam CT. In: Schoepf, U.J. (eds) CT of the Heart. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-818-8:083

Download citation

  • DOI: https://doi.org/10.1385/1-59259-818-8:083

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-303-9

  • Online ISBN: 978-1-59259-818-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics