Skip to main content

Genomic Imprinting and Uniparental Disomy

  • Chapter
The Principles of Clinical Cytogenetics
  • 1543 Accesses

Abstract

Genomic imprinting refers to the process of differential modification and expression of parental alleles. As a result, the same gene can function differently depending on whether it is maternally or paternally derived. This concept is contrary to that of the traditional Mendelian inheritance in which genetic information contributed by either parent is assumed to be equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crouse, H.V. (1960) The controlling element in sex chromosome behaviour in Sciara. Genetics 45, 1429–1443.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hall, J.G. (1990) Genomic imprinting: review and relevance to human diseases. Am. J. Hum. Genet. 46, 857–873.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoppe, P.C. and Illmensee, K. (1977) Microsurgically produced homozygous-diploid uniparental mice. Proc. Natl. Acad. Sci. USA 74, 5657–5661.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. McGrath, J. and Solter, D. (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.

    CAS  PubMed  Google Scholar 

  5. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.

    CAS  PubMed  Google Scholar 

  6. Barton, S.C., Surani, M.A.H., and Norris, M.L. (1984) Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.

    CAS  PubMed  Google Scholar 

  7. Surani, M.A.H., Barton, S.C., and Norris, M.L. (1986) Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–136.

    CAS  PubMed  Google Scholar 

  8. Linder, D., McCaw, B.K., and Hecht, F. (1975) Parthenogenic origin of benign ovarian teratomas. N. Engl. J. Med. 292, 63–66.

    CAS  PubMed  Google Scholar 

  9. Kajii, T. and Ohama, K. (1977) Androgenetic origin of hydatidiform mole. Nature 268, 633–634.

    CAS  PubMed  Google Scholar 

  10. Lawler, S.D., Povey, S., Fisher, R.A., and Pickthal, V.J. (1982) Genetic studies on hydatidiform moles. II. The origin of complete moles. Ann. Hum. Genet. 46, 209–222.

    CAS  PubMed  Google Scholar 

  11. McFadden, D.E. and Kalousek, D.K. (1991) Two different phenotypes of fetuses with chromosomal triploidy: correlation with parental origin of the extra haploid set. Am. J. Med. Genet. 38, 535–538.

    CAS  PubMed  Google Scholar 

  12. Jacobs, P.A., Szulman, A.E., Funkhouser, J., Matsuura, J.S., and Wilson, C.C. (1982) Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann. Hum. Genet. 46, 223–231.

    CAS  PubMed  Google Scholar 

  13. McFadden, D.E., Kwong, L.C., Yam, I.Y., and Langlois, S. (1993) Parental origin of triploidy in human fetuses: evidence for genomic imprinting. Hum. Genet. 92, 465–469.

    CAS  PubMed  Google Scholar 

  14. Cattanach, B.M. (1986) Parental origin effects in mice. J. Embryol. Exp. Morphol. 97(Suppl.), 137–150.

    PubMed  Google Scholar 

  15. Lyon, M.F. (1988) The William Allan Memorial award address: X-chromosome inactivation and the location and expression of X-linked genes. Am. J. Hum. Genet. 42, 8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharman, G.B. (1971) Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230, 231–232.

    CAS  PubMed  Google Scholar 

  17. Takagi, N. and Sasaki, M. (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256, 640–642.

    CAS  PubMed  Google Scholar 

  18. West, J.D., Freis, W.I., Chapman, V.M., and Papaioannou, V.E. (1977) Preferential expression of the maternally derived X chromosome in the mouse yolk sac. Cell 12, 873–882.

    CAS  PubMed  Google Scholar 

  19. Harper, M.I., Fosten, M., and Monk, M. (1982) Preferential paternal X inactivation in extra-embryonic tissues of early mouse embryos. J. Embryol. Exp. Morphol. 67, 127–138.

    CAS  PubMed  Google Scholar 

  20. Harrison, K.B. (1989) X-chromosome inactivation in the human cytotrophoblast. Cytogenet. Cell Genet. 52, 37–41.

    CAS  PubMed  Google Scholar 

  21. Goto, T., Wright, E., and Monk, M. (1997) Paternal X-chromosome inactivation in human trophoblastic cells. Mol. Hum. Reprod. 3, 77–80.

    CAS  PubMed  Google Scholar 

  22. Migeon, B.R., Wolf, S.F., Axelman, J., Kaslow, D.C., and Schmidt, M. (1985) Incomplete X chromosome dosage compensation in chorionic villi of human placenta. Proc. Natl. Acad. Sci. USA 82, 3390–3394.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohandas, T.K., Passage, M.B., Williams, J.W.R., Sparks, R.S., Yen, P.H., and Shapiro, L.J. (1989) X-chromosome inactivation in cultured cells from human chorionic villi. Somat. Cell Mol. Genet. 15, 131–136.

    CAS  PubMed  Google Scholar 

  24. Looijenga, L.H.J., Gillis, A.J.M., Verkerk, A.J.M.H., van Lutten, W.L.J., and Ooserhuis, J.W. (1999) Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas. Am. J. Hum. Genet 64, 1445–1452.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ledbetter, D.H. and Engel, E. (1995) Uniparental disomy in humans: development of an imprinting map and its implications for prenatal diagnosis. Hum. Mol. Genet. 4, 1757–1764.

    CAS  PubMed  Google Scholar 

  26. Barlow, D.P. (1995) Gametic Imprinting in mammals. Science 270, 1610–1613.

    CAS  PubMed  Google Scholar 

  27. Morison, I.M. and Reeve, A.E. (1998) A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum. Mol. Genet. 7, 1610–1613.

    Google Scholar 

  28. Monk, M. (1988) Genomic imprinting. Genes Dev. 2, 921–925.

    CAS  PubMed  Google Scholar 

  29. Razin, A. and Cedar, H. ( 1994) DNA methylation and genomic imprinting. Cell 77, 473–476.

    CAS  PubMed  Google Scholar 

  30. Mohandas, T., Sparkes, R.S., and Shapiro, L.J. (1981) Reactivation of an inactive human X-chromosome: evidence for inactivation by DNA methylation. Science 211, 393–396.

    CAS  PubMed  Google Scholar 

  31. Yen, P.H., Patel, P., Chinault, A.C., Mohandas, T., and Shapiro, L.J. (1984) Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proc. Natl. Acad. Sci. USA 81, 1759–1763.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Keshet, I., Lieman-Hurwitz, J., and Cedar, H. (1986) DNA methylation affects the formation of active chromatin. Cell 44, 535–543.

    CAS  PubMed  Google Scholar 

  33. Reik, W., Collick, A., Norris, M.L., Barton, S.C., and Surani, M.A. (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature 328, 248–251.

    CAS  PubMed  Google Scholar 

  34. Sapienza, C. Peterson, A.C., Rossant, J., and Balling, R. (1987) Degree of methylation of transgenes is dependent on gamete of origin. Nature 328, 251–254.

    CAS  PubMed  Google Scholar 

  35. Swain, J.L., Stewart, T.A., and Leder, P. (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50, 719–727.

    CAS  PubMed  Google Scholar 

  36. Bartolomei, M., Zemel, S., and Tilghman, S.M. (1991) Parental imprinting of the mouse H19 gene. Nature 351, 153–155.

    CAS  PubMed  Google Scholar 

  37. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M., and Surani, M.A. (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–775

    CAS  PubMed  Google Scholar 

  38. Li, E., Beard, C., and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.

    CAS  PubMed  Google Scholar 

  39. DeChiara, T.M., Robertson, E.J., and Efstratiadis, A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859.

    CAS  PubMed  Google Scholar 

  40. Sasaki, H., Jones, P.A., Chaillet, J.R., et al. (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–1856.

    CAS  PubMed  Google Scholar 

  41. Bell, A.C. and Felsenfeld, G. (2000) Methuylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485.

    CAS  PubMed  Google Scholar 

  42. Hark, A.T., Schoenherr, C.J., Katz, D.J., Ingram, R.S., Levorse, J.M., and Tilghman, S.M. (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489.

    CAS  PubMed  Google Scholar 

  43. Barlow, D.P., Stöger, R., Herrmann, B.G., Saito, K., and Schweifer, N. (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87.

    CAS  PubMed  Google Scholar 

  44. Stöger, R., Kubicka, P., Liu, C.G., et al. (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71.

    PubMed  Google Scholar 

  45. Driscoll, D.J., Waters, M.F., Williams, C.A., et al. (1992) A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics 13, 917–924.

    CAS  PubMed  Google Scholar 

  46. Mowery-Rushton, P.A., Driscoll, D.J., Nicholls, R.D., Locker, J., and Surti, U. (1996) DNA methylation patterns in human tissues of uniparental origin using a zinc-finger gene (ZNF127) from the Angelman/Prader-Willi region. Am. J. Med. Genet. 61, 140–146.

    CAS  PubMed  Google Scholar 

  47. Glenn, C.C., Porter, K.A., Jong, M.T., Nicholls, R.D., and Driscoll, D.J. (1993) Functional imprinting and epigenetic modification of the human SNRPN gene. Hum. Mol. Genet. 2, 2001–2005.

    CAS  PubMed  Google Scholar 

  48. Glenn, C.C., Saitoh, S., Jong, M.T.C., Filbrandt, M.M., Surti, U., Driscoll, D.J., and Nicholls, R.D. (1996) Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am. J. Hum. Genet. 58, 335–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dittrich, B., Buiting, K., Gross, S., and Horsthemke, B. (1993) Characterization of a methylation imprint in the Prader-Willi syndrome chromosome region. Hum. Mol. Genet. 2, 1995–1999.

    CAS  PubMed  Google Scholar 

  50. Zhang, Y., Shields, T., Crenshaw, T., Hao, Y., Moulton, T., and Tycko, B. (1993) Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am. J. Hum. Genet. 53, 113–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schneid, H., Seurin, D., Vazquez, M-P., Gourmelen, M., Cabrol, S., and Bouc, Y.L. (1993) Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J. Med. Genet. 30, 353–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohlsson, R., Nyström, A., Pfeifer-Ohlsson, S., et al. (1993) IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet. 4, 94–97.

    CAS  PubMed  Google Scholar 

  53. Kalscheuer, V.M., Mariman, E.C., Schepens, M.T., Rehder, H., and Ropers, H-H. (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nature Genet. 5, 74–78.

    CAS  PubMed  Google Scholar 

  54. Kitsberg, D., Selig, S., Brandeis, M., et al. (1993) Allele-specific replication timing of imprinted gene regions. Nature 364, 459–463.

    CAS  PubMed  Google Scholar 

  55. Knoll, J.H.M., Cheng, S-D., and Lalande, M. (1994) Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nature Genet. 6, 41–46.

    CAS  PubMed  Google Scholar 

  56. LaSalle, J.M. and Lalande, M. (1995) Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution. Nature Genet. 9, 386–394.

    CAS  PubMed  Google Scholar 

  57. White, L.M., Rogan, P.K., Nicholls, R.D., Wu, B-L., Korf, B., and Knoll, J.H.M. (1996) Allele-specific replication of 15q11-q13 loci: a diagnostic test for detection of uniparental disomy. Am. J. Hum. Genet. 59, 423–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Goldman, M.A., Holmquist, G.P., Gray, M.C., Caston, L.A., and Nag, A. (1984) Replication timing of genes and middle repetitive sequences. Science 224, 686–692.

    CAS  PubMed  Google Scholar 

  59. Dhar, V., Skoultchi, A.I., and Schildkraut, C.L. (1989) Activation and repression of a beta-globin gene in cell hybrids is accompanied by a shift in its temporal replication. Mol. Cell Biol. 9, 3524–3532.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Selig, S., Okumura, K., Ward, D.C., and Cedar, H. (1992) Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217–1225.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Feil, R. and Kelsey, G. (1997) Genomic Imprinting: A chromatin connection. Am. J. Hum. Genet. 61, 1213–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Nicholls, R.D. (1994) New insights reveal complex mechanisms involved in genomic imprinting. Am. J. Hum. Genet. 54, 733–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon, A., Koppeschaar, H.P., Roijers, J.F., Hoppener, J.W., and Lips, C.J. (2000) Pseudohypoparathyroidism type Ia. Albright hereditary osteodystrophy: a model for research on G protein-coupled receptors and genomic imprinting. Neth. J. Med. 56, 100–109.

    CAS  PubMed  Google Scholar 

  64. Skuse, D.H., James, R.S., Bishop, D.V., et al. (1997) Evidence from Turner’s syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 705–708.

    CAS  PubMed  Google Scholar 

  65. Nicholls, R.D. (2000) The impact of genomic imprinting for neurobehavioral and developmental disorders. J. Clin. Invest. 105, 413–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ledbetter, D.H., Riccardi, V.M., Airhart, S.D., Strobel, R.J., Keenan, B.S., and Crawford, J.D. (1981) Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N. Engl. J. Med. 304, 325–329.

    CAS  PubMed  Google Scholar 

  67. Ledbetter, D.H., Mascarello, J.T., Riccardi, V.M., Harper, V.D., Airhart, S.D., and Strobel, R.J. (1982) Chromosome 15 abnormalities and the Prader-Willi syndrome: a follow-up report of 40 cases. Am. J. Hum. Genet. 34, 278–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Magenis, R.E., Brown, M.G., Lacy, D.A., Budden, S., and LaFranchi, S. (1987) Is Angelman syndrome an alternate result of del(15)(q11q13)? Am. J. Med. Genet. 28, 829–838.

    CAS  PubMed  Google Scholar 

  69. Reed, M.L. and Leff, S.E. (1994) Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nature Genet. 6, 163–167.

    CAS  PubMed  Google Scholar 

  70. Matsuura, T., Sutcliffe, J.S., Fang, P., et al. (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15, 74–77.

    CAS  PubMed  Google Scholar 

  71. Butler, M.G. and Palmer, C.G. (1983) Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet 1, 1285–1286 (letter).

    CAS  PubMed  Google Scholar 

  72. Knoll, J.H., Nicholls, R.D., Magenis, R.E., Graham, J.M. Jr., Lalande, M., and Latt, S.A. (1989) Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet 32, 285–290.

    CAS  PubMed  Google Scholar 

  73. Magenis, R.E., Toth-Fejel, S., Allen, L.H., et al. (1990) Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am. J. Med. Genet. 35, 333–349.

    CAS  PubMed  Google Scholar 

  74. Williams, C.A., Zori, R.T., Stone, J.W., Gray, B.A., Cantu, E.S., and Ostrer, H. (1990) Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am. J. Med. Genet. 35, 350–353.

    CAS  PubMed  Google Scholar 

  75. Nicholls, R.D., Knoll, J.H.M., Butler, M.G., Karam, S., and Lalande, M. (1989) Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 342, 281–285.

    CAS  PubMed  Google Scholar 

  76. Knoll, J.H.M., Glatt, K.A., Nicholls, R.D., Malcolm, S., and Lalande, M. (1991) Chromosome 15 uniparental disomy is not frequent in Angelman syndrome. Am. J. Hum. Genet. 48, 16–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Malcolm, S., Clayton-Smith, J., Nicols, M., et al. (1991) Uniparental paternal disomy in Angelman’s syndrome. Lancet 337, 694–697.

    CAS  PubMed  Google Scholar 

  78. Mascari, M.J., Gottlieb, W., Rogan, P.K., et al. (1992) The frequency of uniparental disomy in Prader-Willi syndrome: implications for molecular diagnosis. N. Engl. J. Med. 326, 1599–1607.

    CAS  PubMed  Google Scholar 

  79. Bottani, A., Robinson, W.P., DeLozier-Blanchet, C.D., et al. (1994) Angelman syndrome due to paternal uniparental disomy of chromosome 15: a milder phenotype? Am. J. Med. Genet. 51, 35–40.

    CAS  PubMed  Google Scholar 

  80. Wagstaff, J., Knoll, J.H.M., Glatt, K.A., Shugart, Y.Y., Sommer, A., and Lalande, M. (1992) Maternal but not paternal transmission of 15q11-13-linked nondeletion Angelman syndrome leads to phenotypic expression. Nature Genet. 1, 291–294.

    CAS  PubMed  Google Scholar 

  81. Glenn, C.C., Nicholls, R.D., Robinson, W.P., et al. (1993) Modification of 15q11-q13 DNA methylation imprints in unique Angelman and Prader-Willi patients. Hum. Mol. Genet. 2, 1377–1382.

    CAS  PubMed  Google Scholar 

  82. Reis, A., Dittrich, B., Greger, V., et al. (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am. J. Hum. Genet. 54, 741–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sutcliffe, J.S., Nakao, M., Christian, S., et al. (1994) Deletions of a differentially methylated CpG island at the SNRPN gene define a putative impringting control region. Nature Genet. 8, 52–58.

    CAS  PubMed  Google Scholar 

  84. Bürger, J., Buiting, K., Dittrich, B., et al. (1997) Different mechanisms and recurrence risks of imprinting defects in Angelman syndrome. Am. J. Hum. Genet. 61, 88–93.

    PubMed  PubMed Central  Google Scholar 

  85. Kishino, T., Lalande, M., and Wagstaff, J. (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet. 15, 70–73.

    CAS  PubMed  Google Scholar 

  86. Holm, V.A., Cassidy, S.B., Butler, M.G., et al. (1993) Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91, 398–402.

    CAS  PubMed  Google Scholar 

  87. Pfeifer, K. (2000) Mechanisms of genomic impinting. Am. J. Hum. Genet. 67, 777–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, S., Kozlov, S., Hernandez, L., et al. (2000) Expression and imprinting of MAGEL2 suggest a role in Prader-Willi syndrome and the homologous murine imprinting phenotype. Hum. Mol. Genet. 9, 1813–1819.

    CAS  PubMed  Google Scholar 

  89. de los Santos, T., Schweizer, J., Rees, C.A., and Francke, U. (2000) Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which is highly expressed in brain. Am. J. Hum. Genet. 67, 1067–1082.

    PubMed  PubMed Central  Google Scholar 

  90. Lee, S. and Wevrick, R. (2000) Identification of novel imprinted transcripts in the Prader-Willi syndrome and Angelman syndrome deletion region: further evidence for regional imprinting control. Am. J. Hum. Genet. 66, 848–858.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Angelman, H. (1965) “Puppet” children: a report on three cases. Dev. Med. Child. Neurol. 7, 681–688.

    Google Scholar 

  92. Jiang, Y., Lev-Lehman, E., Bressler, J., Tsai, T.-F., and Beaudet, A.L. (1999) Genetics of Angelman syndrome. Am. J. Hum. Genet. 65, 1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nakao, M., Sutcliffe, J.S., Durtschi, B., Mutirangura, A., Ledbetter, D.H., and Beaudet, A.L. (1994) Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3, 309–315.

    CAS  PubMed  Google Scholar 

  94. Vu, T.H. and Hoffman, A.R. (1997) Impringint of the Angelman syndrome gene, UBE3A, is restricted to brain. Nature Genet. 17, 12–13.

    CAS  PubMed  Google Scholar 

  95. Rougeulle, C., Glatt, H., and Lalande, M. (1997) The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nature Genet. 17, 14–15.

    CAS  PubMed  Google Scholar 

  96. Meguro, M., Kashiwagi, A., Mitsuya, K., et al. (2001) A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nature Genet. 28, 19–20.

    CAS  PubMed  Google Scholar 

  97. Buiting, K., Saitoh, S., Gross, S., et al. (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400.

    CAS  PubMed  Google Scholar 

  98. Ohta, T., Buiting, K., Kokkonen, H., et al. (1999) Molecular mechanism of Angelman syndrome in two large families involves an imprinting mutation. Am. J. Hum. Genet. 64, 385–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Buiting, K., Lich, C., Cottrell, S., Barnicoat, A., and Horsthemke, B. (1999) A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp. Hum. Genet. 105, 665–666.

    CAS  PubMed  Google Scholar 

  100. Buiting, K., Barnicoat, A., Lich, C., Pembrey, M., Malcolm, S., and Horsthemke, B. (2001) Disruption of the bipartite imprinting center in a family with Angelman syndrome. Am. J. Hum. Genet. 68, 1290–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Beckwith, J.B. (1969) Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects 5, 188.

    Google Scholar 

  102. Pettenati, M.J., Haines, J.L., Higgins, R.R., Wappner, R.S., Palmer, C.G., and Weaver, D.D. (1986) Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum. Genet. 74, 143–154.

    CAS  PubMed  Google Scholar 

  103. Henry, I., Bonaiti-Pellie, C., Chehensse, V., et al. (1991) Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–667.

    CAS  PubMed  Google Scholar 

  104. Catchpoole, D., Lam, W.W.K., Valler, D., et al. (1997) Epigenetic modification and uniparental inheritance of H19 in Beckwith-Wiedemann syndrome. J. Med. Genet. 34, 353–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Brown, K.W., Gardner, A., Williams, J.C., Mott, M.G., McDermott, A., and Maitland, N.J. (1992) Paternal origin of 11p15 duplications in the Beckwith-Wiedemann syndrome. A new case and review of the literature. Cancer Genet. Cytogenet. 58, 66–70.

    CAS  PubMed  Google Scholar 

  106. Weksberg, R., Teshima, I., Williams, B.R., et al. (1993) Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum. Mol. Genet. 2, 549–556.

    CAS  PubMed  Google Scholar 

  107. Tommerup, N., Brandt, C.A., Pedersen, S., Bolund, L., and Kamper, J. (1993) Sex dependent transmission of Beckwith-Wiedemann syndrome associated with a reciprocal translocation t(9;11)(p11.2;p15.5). J. Med. Genet. 30, 958–961.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Weksberg, R., Nishikawa, J., Caluseriu, O., et al. (2001) Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum. Mol. Genet. 10, 2989–3000.

    CAS  PubMed  Google Scholar 

  109. Moutou, C., Junien, C., Henry, I., and Bonaiti-Pellie, C. (1992) Beckwith-Wiedemann syndrome: a demonstration of the mechanisms responsible for the excess of transmitting females. J. Med. Genet. 29, 217–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Viljoen, D. and Ramesar, R. (1992) Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J. Med. Genet. 29, 221–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hatada, I., Hirofumi, O., Fukushima, Y., et al. (1996) An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nature Genet. 14, 171–173.

    CAS  PubMed  Google Scholar 

  112. Lam, W.W.K., Hatada, I., Ohishi, S., et al. (1999) Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J. Med. Genet. 36, 518–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Ping, A.J., Reeve, A.E., Law, D.J., Young, M.R., Boehnke, M., and Feinberg, A.P. (1989) Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am. J. Hum. Genet. 44, 720–723.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Koufos, A., Grundy, P., Morgan, K., Aet al. (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am. J. Hum. Genet. 44, 711–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, M.P., DeBaun, M.R., Mitsuya, K., et al. (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II impringting. Proc. Natl. Acad. Sci. USA 96, 5203–5208.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, M., Brandenburg, S., Landes, G., Adams, M., Miller, G., and Feinberg, A. (1999) Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum. Mol. Genet. 8, 683–690.

    CAS  PubMed  Google Scholar 

  117. Matsuoka, S., Thompson, J.S., Edwards, M.C., et al. (1996) Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15. Proc. Natl. Acad. Sci. USA 93, 3026–3030.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hatada, I., Inazawa, J., Abe, T., et al. (1996) Genomic imprinting of human p57KIP2 and its reduced expression in Wilms’ tumors. Hum. Mol. Genet. 5, 783–788.

    CAS  PubMed  Google Scholar 

  119. Mitsuya, K., Meguro, M., Le, M.P., et al. (1999) LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum. Mol. Genet. 8, 1209–1217.

    CAS  PubMed  Google Scholar 

  120. Reik, W., Brown, K.W., Schneid, H., Le Bouc, Y., Bickmore, W., and Maher, E.R. (1995) Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4, 2379–2385.

    CAS  PubMed  Google Scholar 

  121. Gaston, V., Le Bouc, Y., Soupre, V., et al. (2001) Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur. J. Hum. Genet. 9, 409–418.

    CAS  PubMed  Google Scholar 

  122. Heutink, P., van der Mey, A.G.L., Sandkuijl, L.A., et al. (1992) A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum. Mol. Genet. 1, 7–10.

    CAS  PubMed  Google Scholar 

  123. Mariman, E.C.M., van Beersum S.E.C., Cremers, C.W.R.J., van Baars, F.M., and Ropers, H.H. (1993) Analysis of a second family with hereditary non-chromaffin paragangliomas locates the underlying gene at the proximal region of chromosome 11q. Hum. Genet. 91, 357–361.

    CAS  PubMed  Google Scholar 

  124. Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., et al. (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851.

    CAS  PubMed  Google Scholar 

  125. Milunsky, J.M., Maher, T.A., Michels, V.V., and Milunsky, A. (2001) Novel mutations and the emergence of a common mutation in the SDHD gene causing familial paraganglioma. Am. J. Med. Genet. 100, 311–314.

    CAS  PubMed  Google Scholar 

  126. Gimenez-Roqueplo, A.-P., Favier, J., Rustin, P., et al. (2001) The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochonbdrial respiratory chain and activates the hypoxia pathway. Am. J. Hum. Genet. 69, 1186–1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. van der Mey, A.G., Maaswinkel-Mooy, P.D., Cornelisse, C.J., Schmidt, P.H., and van de Kamp, J.J. (1989) Genomic imprinting in hereditary glomus tumours: evidence for new genetic theory. Lancet 2, 1291–1294.

    PubMed  Google Scholar 

  128. van Gils, A.P., van der Mey, A.G., Hoogma, R.P., et al. (1992) MRI screening of kindred at risk of developing paragangliomas: support for genomic imprinting in hereditary glomus tumours. Br. J. Cancer 65, 903–907.

    PubMed  PubMed Central  Google Scholar 

  129. Schroeder, W.T., Chao, L-Y., Dao, D.D., et al. (1987) Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. Hum. Genet. 40, 413–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mannens, M., Slater, R.M., Heyting, C., et al. (1988) Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumors. Hum. Genet. 81, 41–48.

    CAS  PubMed  Google Scholar 

  131. Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., and Sapienza, C. (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl. Acad. Sci. USA 86, 7480–7484.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Koi, M., Johnson, L.A., Kalikin, L.M., Little, P.F., Nakamura, Y., and Feinberg, A.P. (1993) Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260, 361–364.

    CAS  PubMed  Google Scholar 

  133. Ogawa, O., Eccles, M.R., Szeto, J., et al. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362, 749–751.

    CAS  PubMed  Google Scholar 

  134. Wu, H.K., Squire, J.A., Catzavelos, C.G., and Weksberg, R. (1997) Relaxation of imprinting of human insulin-like growth factor II gene, IGF2, in sporadic breast carcinomas. Biochem. Biophys. Res. Commun. 235, 123–129.

    CAS  PubMed  Google Scholar 

  135. Wang, W.H., Duan, J.X., Vu, T.H., and Hoffman, A.R. (1996) Increased expression of the insulin-like growth factor-II gene in Wilms’ tumor is not dependent on loss of genomic imprinting or loss of heterozygosity. J. Biol. Chem. 271, 27,863–27,870.

    CAS  PubMed  Google Scholar 

  136. Friend, S.H., Bernards, R., Rogelj, S., et al. (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646.

    CAS  PubMed  Google Scholar 

  137. Ejima, Y., Sasaki, M.S., Kaneko, A., and Tanooka, H. (1988) Types, rates, origin and expressivity of chromosome mutations involving 13q14 in retinoblastoma patients. Hum. Genet. 79, 118–123.

    CAS  PubMed  Google Scholar 

  138. Dryja, T.P., Mukai, S., Petersen, R., Rapaport, J.M., Walton, D., and Yandell, D.W. (1989) Parental origin of mutations of the retinoblastoma gene. Nature 339, 556–558.

    CAS  PubMed  Google Scholar 

  139. Toguchida, J., Ishizaki, K., Sasaki, M.S., et al. (1989) Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338, 156–158.

    CAS  PubMed  Google Scholar 

  140. Kato, M.V., Ishizaki, K., Shimizu, T., et al. (1994) Parental origin of germ-line and somatic mutations in the retinoblastoma gene. Hum. Genet. 94, 31–38.

    CAS  PubMed  Google Scholar 

  141. Leach, R.J., Magewu, A.N., Buckley, J.D., et al. (1990) Preferential retention of paternal alleles in human retinoblastoma: evidence for genomic imprinting. Cell Growth Differ. 1, 401–406.

    CAS  PubMed  Google Scholar 

  142. Mitelman, F. (1994) Catalog of Chromosome Aberrations in Cancer, 5th ed. Wiley-Liss, New York.

    Google Scholar 

  143. Cheng, J.M., Hiemstra, J.L., Schneider, S.S., et al. (1993) Preferential amplification of the paternal allele of the N-myc gene in human neuroblastomas. Nature Genet. 4, 191–194.

    CAS  PubMed  Google Scholar 

  144. Caron, H., Peter, M., van Sluis, P., et al. (1995) Evidence for two tumour suppressor loci on chromosomal bands 1p35-36 involved in neuroblastoma: one probably imprinted, another associated wtih N-myc amplification. Hum. Mol. Genet. 4, 535–539.

    CAS  PubMed  Google Scholar 

  145. Hogarty, M.D., Winter, C.L., Liu, X., et al. (2002) No evidence for the presence of an imprinted neuroblastoma suppressor gene within chromosome sub-band 1p36.3. Cancer Res. 15, 6481–6484.

    Google Scholar 

  146. Engel, E. (1980) A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am. J. Med. Genet. 6, 137–143.

    CAS  PubMed  Google Scholar 

  147. Wang, J-C.C., Passage, M.B., Yen, P.H., Shapiro, L.J., and Mohandas, T.K. (1991) Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier. Am. J. Hum. Genet. 48, 1069–1074.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Robinson, W.P., Wagstaff, J., Bernasconi, F., et al. (1993) Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome. J. Med. Genet. 30, 756–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Spence, J.E., Perciaccante, R.G., Greig, G.M., et al. (1988) Uniparental disomy as a mechanism for human genetic disease. Am. J. Hum. Genet. 42, 217–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pulkkinen, L., Bullrich, F., Czarnecki, P., Weiss, L., and Uitto, J. (1997) Maternal uniparental disomy of chromosome 1 with reduction to homozygosity of the LAMB3 locus in a patient with Herlitz junctional epidermolysis bullosa. Am. J. Hum. Genet. 61, 611–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Dufourcq-Lagelouse, R., Lambert, N., Duval, M., et al. (1999) ChediaHigashi syndrome associated with maternal uniparental isodisomy of chromosome 1. Eur. J. Hum. Genet. 7, 633–637.

    CAS  PubMed  Google Scholar 

  152. Spiekerkoetter, U., Eeds, A., Yue, Z., Haines, J., Strauss, A.W., and Summar, M. (2002) Uniparental disomy of chromosome 2 resulting in lethal trifunctional protein deficiency due to homozygous alpha-subunit mutations. Hum. Mutat 20, 447–451.

    CAS  PubMed  Google Scholar 

  153. Field, L.L., Tobias, R., Robinson, W.P., Paisey, R., and Bain, S. (1998) Maternal uniparental disomy of chromosome 1 with no apparent phenotypic effects. Am. J. Hum. Genet. 63, 1216–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gelb., B. D., Willner, J.P., Dunn, T.M., et al. (1998) Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis. Am. J. Hum. Genet. 62, 848–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Miura, Y., Hiura, M., Torigoe K., et al. (2000) Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis. Hum. Genet. 107, 205–209.

    CAS  PubMed  Google Scholar 

  156. Takizawa, Y., Pulkkinen, L., Chao, S.C., et al. (2000) Mutation report: complete paternal uniparental isodisomy of chromosome 1: a novel mechanism for Herlitz junctional epidermolysis bullosa. J. Invest. Dermatol. 115, 307–311.

    CAS  PubMed  Google Scholar 

  157. Thompson, D.A., McHenry, C.L., Li, Y., et al. (2002) Retinal dystrophy due to paternal isodisomy for chromosome 1 or chromosome 2, with homoallelism for mutations in RPE65 or MERTK, respectively. Am. J. Hum. Genet. 70, 224–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Chen, H., Young, R., Mu, X., et al. (1999) Uniparental isodisomy resulting from 46,XX,i(1p),i(1q) in a woman with short stature, ptosis, micro/retrognathia, myopathy, deafness, and sterility. Am. J. Med. Genet. 82, 215–218.

    CAS  PubMed  Google Scholar 

  159. Harrison, K., Eisenger, K., Anyane-Yeboa, K., and Brown, S. (1995) Maternal uniparental disomy of chromosome 2 in a baby with trisomy 2 mosaicism in amniotic fluid culture. Am. J. Med. Genet. 58, 147–151.

    CAS  PubMed  Google Scholar 

  160. Webb, A.L., Sturgiss, S., Warwicker, P., Robson, S.C., Goodship, J.A., and Wolstenholme, J. (1996) Maternal uniparental disomy for chromosome 2 in association with confined placental mosaicism for trisomy 2 and severe intrauterine growth retardation. Prenat. Diag. 16, 958–962.

    CAS  Google Scholar 

  161. Hansen, W.F., Bernard, L.E., Langlois, S., et al. (1997) Maternal uniparental disomy of chromosome 2 and confined placental mosaicism for trisomy 2 in a fetus with intrauterine growth restriction, hypospadias, and oligohydramnios. Prenat. Diag. 17, 443–450.

    CAS  Google Scholar 

  162. Wolstenholme, J., White, I., Sturgiss, S., Carter, J., Plant, N., and Goodship, J.A. (2001) Maternal uniparental heterodisomy for chromosome 2: detection through “atypical” maternal AFP/hCG levels, with an update on a previous case. Prenat. Diagn. 21, 813–817.

    CAS  PubMed  Google Scholar 

  163. Bernasconi, F., Karagüzel, A., Celep, F., Keser, I., Lüleci, G., Dutly, F., and Schinzel, A.A. (1996) Normal phenotype with maternal isodisomy in a female with two isochromosomes: i(2p) and i(2q). Am. J. Hum. Genet. 59, 1114–1118.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Shaffer, L.G., McCaskill, C., Egli, C.A., Baker, J.C., and Johnston, K.M. (1997) Is there an abnormal phenotype associated with maternal isodisomy for chromosome 2 in the presence of two isochromosomes? Am. J. Hum. Genet. 61, 461–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Heide, E., Heide, K.-G., and Rodewald, A. (2000) Maternal uniparental disomy (UPD) for chromosome 2 discovered by exclusion of paternity. Am. J. Med. Genet. 92, 260–263.

    CAS  PubMed  Google Scholar 

  166. Albrecht, B., Mergenthaler, S., Eggermann, K., Zerres, K., Passarge, E., and Eggermann, T. (2001) Uniparental isodisomy for paternal 2 p and maternal 2q in a phenotypically normal female with two isochromosomes, i(2p) and i(2q). J. Med. Genet. 38, 214–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Lindenbaum, R.H., Woods, C.G., Norbury, C.G., Povey, S., and Rysiecki, G. (1991) An individual with maternal disomy of chromosome 4 and iso (4p), iso 4(q). Am. J. Hum. Genet. 49(Suppl.), A285.

    Google Scholar 

  168. Kuchinka, B.D., Barrett, I.J., Moya, G., et al. (2001) Two cases of confined placental mosaicism for chromosome 4, including one with maternal uniparental disomy. Prenat. Diagn. 21, 36–39.

    CAS  PubMed  Google Scholar 

  169. Brzustowicz, L.M., Allitto, B.A., Matseoane, D., et al. (1994) Paternal isodisomy for chromosome 5 in a child with spinal muscular atrophy. Am. J. Hum. Genet. 54, 482–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. van den Berg-Loonen, E.M., Savelkoul, P., van Hooff, H., van Eede, P., Riesewijk, A., and Geraedts, J. (1996) Uniparental maternal disomy 6 in a renal transplant patient. Hum. Immunol. 45, 46–51.

    PubMed  Google Scholar 

  171. Sprio, R.P., Christian, S.L., Ledbetter, D.H., et al. (1999) Intrauterine growth retardation associated with maternal uniparental disomy for chromosome 6 unmasked by congenital adrenal hyperplasia. Pediatr Res. 46, 510–513.

    Google Scholar 

  172. Eggermann, T., Marg, W., Mergenthaler, S., et al. (2001) Origin of uniparental disomy 6: presentation of a new case and review on the literature. Ann. Genet. 44, 41–45.

    CAS  PubMed  Google Scholar 

  173. López-Gutiérrez, A.U., Riba, L., Ordoñez-Sánchez, M.L., Ramírez-Jiménez, S., Cerrillo-Hinojosa, M., and Tusié-Luna, M.T. (1998) Uniparental disomy for chromosome 6 results in steroid 21-hydroxylase deficiency: evidence of different genetic mechanisms involved in the production of the disease. J. Med. Genet. 35, 1014–1019.

    PubMed  PubMed Central  Google Scholar 

  174. Das, S., Lese, C.M., Song, M., Jensen, J.L., et al. (2000) Partial paternal uniparental disomy of chromosome 6 in an infant with neonatal diabetes, macroglossia, and craniofacial abnormalities. Am. J. Hum. Genet. 67, 1586–1591.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kamiya, M., Judson, H., Okazaki, Y., et al. (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum. Mol. Genet. 9, 453–460.

    CAS  PubMed  Google Scholar 

  176. Gardner, R.J., Mackay, D.J.G., Mungall, A.J., et al. (2000) An imprinted locus associated with transient neonatal diabetes mellitus. Hum. Mol. Genet. 9, 589–596.

    CAS  PubMed  Google Scholar 

  177. Langlois, S., Yong, S.L., Wilson, R.D., Kwong, L.C., and Kalousek, D.K. (1995) Prenatal and postnatal growth failure associated with maternal heterodisomy for chromosome 7. J. Med. Genet. 32, 871–875.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Preece, M.A., Price, S.M., Davies, V., et al. (1997) Maternal uniparental disomy 7 in Silver-Russell syndrome. J. Med. Genet. 34, 6–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hannula, K., Lipsanen-Nyman, M., Kontiokari, T., and Kere, J. (2001) A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region. Am. J. Hum. Genet. 68, 247–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Voss, R., Ben-Simon, E., Avital, A., et al. (1989) Isodisomy of chromosome 7 in a patient with cystic fibrosis: could uniparental disomy be common in humans? Am. J. Hum. Genet. 45, 373–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Preece, M.A., Abu-Amero, S.N., Ali, Z., et al. (1999) An analysis of the distribution of hetero-and isodisomic regions of chromosome 7 in five mUPD7 Silver-Russell syndrome probands. J. Med. Genet. 36, 457–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kotzot, D., Schmitt, S., Bernasconi, F., et al. (1995) Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardatin. Hum. Mol. Genet. 4, 583–587.

    CAS  PubMed  Google Scholar 

  183. Hitchins, M.P., Stanier, P., Preece, M.A., and Moore, G.E. (2001) Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J. Med. Genet. 38, 810–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Monk, D., Wakeling, E.L., Proud, V., Het al. (2000) Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am. J. Hum. Genet. 66, 36–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Yoshihashi, H., Maeyama, K., Kosaki, R., et al. (2000) Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am. J. Hum. Genet. 67, 476–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Blagitko, N., Mergenthaler, S., Schulz, U., et al. (2000) Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue-and isoform-specific fashion. Hum. Mol. Genet. 9, 1587–1595.

    CAS  PubMed  Google Scholar 

  187. Kobayashi, S., Uemura, H., Kohda, T., et al. (2001) No evidence of PEG1/MEST gene mutations in Silver-Russell synbdrome patients. Am. J. Med. Genet. 104, 225–231.

    CAS  PubMed  Google Scholar 

  188. Höglund, P., Holmberg, C., de la Chapelle, A., and Kere, J. (1994) Paternal isodisomy for chromosome 7 is compatible with normal growth and development in a patient with congenital chloride diarrhea. Am. J. Hum. Genet. 55, 747–752.

    PubMed  PubMed Central  Google Scholar 

  189. Pan, Y., McCaskill, C.D., Thompson, K.H., et al. (1998) Paternal isodisomy of chromosome 7 associated with complete situs inversus and immotile cilia. Am. J. Hum. Genet. 62, 1551–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Eggerding, F.A., Schonberg, S.A., Chehab, F.F., Norton, M.E., Cox, V.A., and Epstein, C.J. (1994) Uniparental isodisomy for paternal 7p and maternal 7q in a child with growth retardation. Am. J. Hum. Genet. 55, 253–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kotzot, D., Holland, H., Keller, E., and Froster, U.G. (2001) Maternal isochromosome 7q and paternal isochromosome 7p in a boy with growth retardation. Am. J. Med. Genet. 102, 169–172.

    CAS  PubMed  Google Scholar 

  192. Karanjawala, Z.E., Kääriäinen, H., Ghosh, S., et al. (2000) Complete maternal isodisomy of chromosome 8 in an individual with an early-onset ileal carcinoid tumor. Am. J. Med. Genet. 93, 207–210.

    CAS  PubMed  Google Scholar 

  193. Benlian, P., Foubert, L., Gagné, E., et al. (1996) Complete paternal isodisomy for chromosome 8 unmasked by lipoprotein lipase deficiency. Am. J. Hum. Genet. 59, 431–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Sulisalo, T., Makitie, O., Sistonen, P., et al. (1997) Uniparental disomy in cartilage-hair hypoplasia. Eur. J. Hum. Genet. 5, 35–42.

    CAS  PubMed  Google Scholar 

  195. Tiranti, V., Lamantea, E., Uziel, G., et al. (1999) Leigh syndrome transmitted by uniparental disomy of chromosome 9. J. Med. Genet. 36, 927–928.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Wilkinson, T.A., James, R.S., Crolla, J.A., Cockwell, A.E., Campbell, P.L., and Temple, I.K. (1996) A case of maternal uniparental disomy of chromosome 9 in association with confined placental mosaicism for trisomy 9. Prenat. Diag. 16, 371–374.

    CAS  Google Scholar 

  197. Björck, E.J., Anderlid, B.-M., and Blennow, E. (1999) Maternal isodisomy of chromosome 9 with no impact on the phenotype in a woman with two isochromosomes: i(9p) and i(9q). Am. J. Med. Genet. 87, 49–52.

    PubMed  Google Scholar 

  198. Jones, C., Booth, C., Rita, D., et al. (1995) Identification of a case of maternal uniparental disomy of chromosome 10 associated with confined placental mosaicism. Prenat. Diag. 15, 843–848.

    CAS  Google Scholar 

  199. Grundy, P., Telzerow, P., Paterson, M.C., Habier, D., Berman, B., Li, F., and Garber, J. (1991) Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet 338, 1079–1080 (letter).

    CAS  PubMed  Google Scholar 

  200. Webb, A., Beard, J., Wright, C., Robson, S., Wolstenholme, J., and Goodship, J. (1995) A case of paternal uniparental disomy for chromosome 11. Prenat. Diag. 15, 773–777.

    CAS  Google Scholar 

  201. Dutly, F., Baumer, A., Kayserili, H., et al. (1998) Seven cases of Wiedemann-Beckwith syndrome, including the first reported case of mosaic paternal isodisomy along the whole chromosome 11. Am. J. Med. Genet. 79, 347–353.

    CAS  PubMed  Google Scholar 

  202. von Eggeling, F., Hoppe, C., Bartz, U., et al. (2002) Maternal uniparental disomy 12 in a healthy girl with a 47,XX,+der(12)(:p11(q11:)/46,XX karyotype. J. Med. Genet. 39, 519–521.

    Google Scholar 

  203. Slater, H., Shaw, J.H., Dawson, G., Bankier, A., and Forrest, S.M. (1994) Maternal uniparental disomy of chromosome 13 in a phenotypically normal child. J. Med. Genet. 31, 644–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Stallard, R., Krueger, S., James, R.S., and Schwartz, S. (1995) Uniparental isodisomy 13 in a normal female due to transmission of a maternal t(13q13q). Am. J. Med. Genet. 57, 14–18.

    CAS  PubMed  Google Scholar 

  205. Slater, H., Shaw, J.H., Bankier, A., Forrest, S.M., and Dawson, G. (1995) UPD 13: no indication of maternal or paternal imprinting of genes on chromosome 13. J. Med. Genet. 32, 493.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Jävela, I., Savukoski, M., Ämmälä, P., and Von Koskull, H. (1998) Prenatally detected paternal uniparental chromosome 13 isodisomy. Prenat. Diagn. 18, 1169–1173.

    Google Scholar 

  207. Berend, S.A., Feldman, G.L., McCaskill, C., Czarnecki, P., Van Dyke, D.L., and Shaffer, L.G. (1999) Investigation of two cases of paternal disomy 13 suggests timing of isochromosome formation and mechanisms leading to uniparental disomy. Am. J. Med. Genet. 82, 275–281.

    CAS  PubMed  Google Scholar 

  208. Soler, A., Margarit, E., Queralt, R., et al. (2000) Paternal isodisomy 13 in a normal newborn infant after trisomy rescue evidenced by prenatal diagnosis. Am. J. Med. Genet. 90, 291–293.

    CAS  PubMed  Google Scholar 

  209. Hordijk, R., Wierenga, H., Scheffer, H., Leegte, B., Hofstra, R.M.W., and Stolte-Dijkstra, I. (1999) Maternal uniparental disomy for chromosome 14 in a boy with a normal karyotype. J. Med. Genet. 36, 782–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Sanlaville, D., Aubry, M.C., Dumez, Y., et al. (2000) Maternal uniparental heterodisomy of chromosome 14: chromosomal mechanism and clinical follow up. J. Med. Genet. 37, 525–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Temple, I.K., Cockwell, A., Hassold, T., Pettay, D., and Jacobs, P. (1991) Maternal uniparental disomy for chromosome 14. J. Med. Genet. 28, 511–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Berends, M.J.W., Hordijk, R., Scheffer, H., Oosterwijk, J.C., Halley, D.J.J., and Sorgedrager, N. (1999) Two cases of maternal uniparental disomy 14 with a phenotype overlapping with the Prader-Willi phenotype. Am. J. Med. Genet. 84, 76–79.

    CAS  PubMed  Google Scholar 

  213. Towner, D.R., Shaffer, L.G., Yang, S.P., and Walgenbach, D.D. (2001) Confined placental mosaicism for trisomy 14 and maternal uniparental disomy in association with elevated second trimester maternal serum human chorionic gonadotrophin and third trimester fetal growth restriction. Prenat. Diagn. 21, 395–398.

    CAS  PubMed  Google Scholar 

  214. Papenhausen, P.R., Mueller, O.T., Johnson, V.P., Sutcliffe, M., Diamond, T.M., and Kousseff, B.G. (1995) Uniparental isodisomy of chromosome 14 in two cases: an abnormal child and a normal adult. Am. J. Med. Genet. 59, 271–275.

    CAS  PubMed  Google Scholar 

  215. Walter, C.A., Shaffer, L.G., Kaye, C.I., et al. (1996) Short-limb dwarfism and hypertrophic cardiomyopathy in a patient with paternal isodisomy 14: 45,XY,idic(14)(p11). Am. J. Med. Genet. 65, 259–265.

    CAS  PubMed  Google Scholar 

  216. Cotter, P.D., Kaffe, S., McCurdy, L.D., Jhaveri, M., Willner, J.P., and Hirschhorn, K. (1997) Paternal uniparental disomy for chromosome 14: a case report and review. Am. J. Med. Genet. 70, 74–79.

    CAS  PubMed  Google Scholar 

  217. McGowan, K.D., Weiser, J.J., Horwitz, J., et al. (2002) The importance of investigating for uniparental disomy in prenatally identified balanced acrocentric rearrangements. Prenat. Diagn. 22, 141–143.

    PubMed  Google Scholar 

  218. Kurosawa, K., Sasaki, H., Sato, Y., et al. (2002) Paternal UPD14 is responsible for a distinctive malformation complex. Am. J. Med. Genet. 110, 268–272.

    PubMed  Google Scholar 

  219. Georgiades, P., Chierakul, C., and Ferguson-Smith, A.C. (1998) Parental origin effects in human trisomy for chromosome 14q: implications for genomic imprinting. J. Med. Genet. 35, 821–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Sutton, V.R., and Shaffer, L.G. (2000) Search for imprinted regions on chromosome 14: comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion. Am. J. Med. Genet. 93, 381–387.

    CAS  PubMed  Google Scholar 

  221. Cox, D.W., Gedde-Dahyl, T., Menon, A.G., et al. (1995) Report of the second international workship on human chromosome 14 mapping 1994. Cytogenet. Cell Genet. 69, 159–174.

    CAS  PubMed  Google Scholar 

  222. Cattanach, B.M., Barr, J., and Jones, J. (1995) Use of chromosome rearrangements for investigations into imprinting in the mouse. In Genomic Imprinting, Causes and Consequences. (Ohlsson, R., Hall, K., and Ritzen M., eds.), Cambridge University Press, Cambridge, pp. 327–341.

    Google Scholar 

  223. Mitchell, J., Schinzel, A., Langlois, S., et al. (1996) Comparison of phenotype in uniparental disomy and deletion Prader-Willi syndrome: sex specific differences. Am. J. Med. Genet. 65, 133–136.

    CAS  PubMed  Google Scholar 

  224. Cassidy, S.B., Forsythe, M., Heeger, S., et al. (1997) Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am. J. Med. Genet. 68, 433–440.

    CAS  PubMed  Google Scholar 

  225. Gillessen-Kaesbach, G., Robinson, W., Lohmann, D., Kaya-Westerloh, S., Passarge, E., and Horsthemke, B. (1995) Genotype-phenotype correlation in a series of 167 deletion and non-deletion patients with Prader-Willi syndrome. Hum. Genet. 96, 638–643.

    CAS  PubMed  Google Scholar 

  226. Gardner, J.M., Nakatsu, Y., Gondo, Y., et al. (1992) The mouse pink-eyed dilution gene: association with human Prader-Willi and Angelman syndromes. Science 257, 1121–1124.

    CAS  PubMed  Google Scholar 

  227. Rinchik, E.M., Bultman, S.J., Horsthemke, B., et al. (1993) A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature 361, 72–76.

    CAS  PubMed  Google Scholar 

  228. Lee, S-T., Nicholls, R.D., Phil, D., et al. (1994) Mutations of the P gene in oculocutaneous albinism, ocular albinism, and Prader-Willi syndrome plus albinism. N. Engl. J. Med. 330, 529–534.

    CAS  PubMed  Google Scholar 

  229. Smith, A., Marks, R., Haan, E., Dixon, J., and Trent, R.J. (1997) Clinical features in four patients with Angelman syndrome resulting from paternal uniparental disomy. J. Med. Genet. 34, 426–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Prasad, C. and Wagstaff, J. (1997) Genotype and phenotype in Angelman syndrome caused by paternal UPD 15. Genotype and phenotype in Angelman syndrome caused by paternal UPD 15. Am. J. Med. Genet. 70, 328–329.

    CAS  PubMed  Google Scholar 

  231. Fridman, C., Varela, M.C., Kok, F., Diament, A., and Koiffmann, C.P. (2000) Paternal UPD 15: further genetic and clinical studies in four Angelman syndrome patients. Am. J. Med. Genet. 92, 322–327.

    CAS  PubMed  Google Scholar 

  232. Kalousek, D.K., Langlois, S., Barrett, I., et al. (1993) Uniparental disomy for chromosome 16 in humans. Am. J. Hum. Genet. 52, 8–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Vaughan, J., Zehra, A., Bower, S., Bennett, P., Chard, T., and Moore, G. (1994) Human maternal uniparental disomy for chromosome 16 and fetal development. Prenat. Diag. 14, 751–756.

    CAS  Google Scholar 

  234. Whiteford, M.L., Coutts, J., Al-Roomi, L., et al. (1995) Uniparental isodisomy for chromosome 16 in a growth-retarded infant with congenital heart disease. Prenat. Diag. 15, 579–584.

    CAS  Google Scholar 

  235. Schneider, A.S., Bischoff, F.Z., McCaskill, C., Coady, M.L., Stopfer, J.E., and Shaffer, L.G. (1996) Comprehensive 4-year follow-up on a case of maternal heterodisomy for chromosome 16. Am. J. Med. Genet. 66, 204–208.

    CAS  PubMed  Google Scholar 

  236. O’Riordan, S., Greenough, A., Moore, G.E., Bennett, P., and Nicolaides, K.H. (1996) Case report: uniparental disomy 16 in association with congenital heart disease. Prenat. Diag. 16, 963–965.

    Google Scholar 

  237. Woo, V., Bridge, P.J., and Bamforth, J.S. (1997) Maternal uniparental heterodisomy for chromosome 16: case report. Am. J. Med. Genet. 70, 387–390.

    CAS  PubMed  Google Scholar 

  238. Hsu, W.-T., Shchepin, D.A., Mao, R., et al. (1998) Mosaic trisomy 16 ascertained through amniocentesis: evaluation of 11 new cases. Am. J. Med. Genet. 80, 473–480.

    CAS  PubMed  Google Scholar 

  239. Wang, J.-C.C., Mamunes, P., Kou, S.-Y., Schmidt, J., Mao, R., and Hsu, W.-T. (1998) Centromeric DNA break in a 10;16 reciprocal translocation associated with trisomy 16 confined placental mosaicism and maternal uniparental disomy for chromosome 16. Am. J. Med. Genet. 80, 418–422.

    CAS  PubMed  Google Scholar 

  240. Abu-Amero, S.N., Ali, Z., Abu-Amero, K.K., Stanier, P., and Moore, G.E. (1999) An analysis of common isodisomic regions in five mUPD 16 probands. J. Med. Genet. 36, 204–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Young, P.J., Marion, S.A., Barrett, I.J., Kalousek, D.K., and Robinson, W.P. (2002) Evidence for imprinting on chromosome 16: the effect of uniparental disomy on the outcome of mosaic trisomy 16 pregnancies. Am. J. Med. Genet. 112, 123–132.

    Google Scholar 

  242. Kohlhase, J., Janssen, B., Weidenauer, K., Harms, K., and Bartels, I. (2000) First confirmed case with paternal uniparental disomy of chromosome 16. Am. J. Med. Genet. 91, 190–191.

    CAS  PubMed  Google Scholar 

  243. Genuardi, M., Tozzi, C., Pomponi, M.G., et al. (1999) Mosaic trisomy 17 in amniocytes: phenotypic outcome, tissue distribution, and uniparental disomy studies. Eur. J. Hum. Genet. 7, 421–426.

    CAS  PubMed  Google Scholar 

  244. Chudoba, I., Franke, Y., Senger, G., et al. (1999) Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur. J. Hum. Genet. 7, 533–540.

    CAS  PubMed  Google Scholar 

  245. Salafsky, I.S., MacGregor, S.N., Claussen, U., and von Eggeling, F. (2001) Maternal UPD 20 in an infant from a pregnancy with mosaic trisomy 20. Prenat. Diagn. 21, 860–863.

    CAS  PubMed  Google Scholar 

  246. Eggermann, T., Mergenthaler, S., Eggermann, K., et al. (2001) Identification of interstitial maternal uniparental disomy (UPD) (14) and complete maternal UPD (20) in a cohort of growth retarded patients. J. Med. Genet. 38, 86–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Venditti, C.P., Hunt, P., Donnenfeld, A., Zackai, E., and Spinner, N.B. (2004) Mosaic paternal uniparental (iso)disomy for chromosome 20 associated with multiple anomalies. Am. J. Med. Genet. 124A, 274–279.

    PubMed  Google Scholar 

  248. Creau-Goldberg, N., Gegonne, A., Delabar, J., et al. (1987) Maternal origin of a de novo balanced t(21q21q) identified by ets-2 polymorphism. Hum. Genet. 76, 396–398.

    CAS  PubMed  Google Scholar 

  249. Rogan, P.K., Sabol, D.W., and Punnett, H.H. (1999) Maternal uniparental disomy of chromosome 21 in a normal child. Am. J. Med. Genet. 83, 69–71.

    CAS  PubMed  Google Scholar 

  250. Henderson, D.J., Sherman, L.S., Loughna, S.C., Bennett, P.R., and Moore, G.E. (1994) Early embryonic failure associated with uniparental disomy for human chromosome 21. Hum. Mol. Genet. 3, 1373–1376.

    CAS  PubMed  Google Scholar 

  251. Blouin, J-L., Avramopoulos, D., Pangalos, C., and Antonarakis, S.E. (1993) Normal phenotype with paternal uniparental isodisomy for chromosome 21. Am. J. Hum. Genet. 53, 1074–1078.

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Robinson, W.P., Bernasconi, F., Basaran, S., et al. (1994) A somatic origin of homologous Robertsonian translocations and isochromosomes. Am. J. Hum. Genet. 54, 290–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Palmer, C.G., Schwartz, S., and Hodes, M.D. (1980) Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter. Clin. Genet. 17, 418–422.

    CAS  PubMed  Google Scholar 

  254. Kirkels, V.G., Hustinx, T.W., and Scheres, J.M. (1980) Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin. Genet. 18, 456–461.

    CAS  PubMed  Google Scholar 

  255. Schinzel, A.A., Basaran, S., Bernasconi, F., Karaman, B., Yüksel-Apak, M., and Robinson, W.P. (1994) Maternal uniparental disomy 22 has no impact on the phenotype. Am. J. Hum. Genet. 54, 21–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Balmer, D., Baumer, A., Röthlisberger, G., and Schinzel, A. (1999) Severe intra-uterine growth retardation in a patient with maternal uniparental disomy 22 and a 22-trisomic placenta. Prenat. Diagn. 19, 1061–1064.

    CAS  PubMed  Google Scholar 

  257. Miny, P., Koopers, B., Rogadanova, N., Schulte-Vallenun, M., Horst, J., and Dwornizak, B. (1995) European Society of Human Genetics 17th Annual Meeting, abstract H-76.

    Google Scholar 

  258. Avivi, L., Korenstein, A., Braier-Goldstein, O., Goldman, B., and Ravia, Y. (1992) Uniparental disomy of sex chromosome in man. Am. J. Hum. Genet. 51(Suppl.), A11.

    Google Scholar 

  259. Quan, F., Janas, J., Toth-Fejel, S., Johnson, D.B., Wolford, J.K., and Popovich, B.W. (1997) Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. Am. J. Hum. Genet. 60, 160–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Schinzel, A.A., Robinson, W.P., Binkert, F., Torresani, T., and Werder, E.A. (1993) Exclusively paternal X chromosomes in a girl with short stature. Hum. Genet. 92, 175–178.

    CAS  PubMed  Google Scholar 

  261. Vidaud, D., Vidaud, M., Plassa, F., Gazengel, C., Noel, B., and Goossens, M. (1989) Father-to-son transmission of hemophilia A due to uniparental disomy. Am. J. Hum. Genet. 45(Suppl.), A226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wang, JC.C. (2005). Genomic Imprinting and Uniparental Disomy. In: Gersen, S.L., Keagle, M.B. (eds) The Principles of Clinical Cytogenetics. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-833-1:515

Download citation

Publish with us

Policies and ethics