Skip to main content

Molecular Therapeutic Approaches for Myocardial Protection

  • Chapter
Cardiovascular Genomics

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 533 Accesses

Abstract

Heart failure associated with coronary artery disease is a major cause of morbidity and mortality. Recent developments in the understanding of the molecular mechanisms of heart failure have led to the identification of novel therapeutic targets which, combined with the availability of efficient gene delivery vectors, offer the opportunity for the design of gene therapies for protection of the myocardium. Viral and cell-based therapies have been developed to treat polygenic and complex diseases such as myocardial ischemia, hypertension, atherosclerosis, and restenosis. In addition, cell-based therapies may have potential application in neovascularization and regeneration of ischemic and infarcted myocardium. The recent isolation of regeneration-competent endothelial precursor cells from adult bone marrow provides a novel opportunity for repair of the failing heart using autologous cell transplantation. In this chapter we will focus on the latest advances in the field of gene- and cell-based therapies for treatment of heart failure, and their clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB, Belanger AJ. Epidemiology of heart failure. Am Heart J 1991;12:951–957.

    Article  Google Scholar 

  2. Stein EA. Identification and treatment of individuals at high risk of coronary artery disease. Am J Med 2002;112(8A).

    Google Scholar 

  3. Wilson PWF, D’Agostino RB, Levy D, Belanger, AJ, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998;97:1837–1847.

    PubMed  CAS  Google Scholar 

  4. D’Agostino RB, Russel MW, Huse DM, et al. Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am Heart J 2000;139:272–281.

    Article  PubMed  CAS  Google Scholar 

  5. McMurray JC, Pfeffer MA. New therapeutic options in congestive heart failure. Circulation 2002;105: 2099–2106.

    Article  PubMed  Google Scholar 

  6. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther 1998;80:35–47.

    Article  PubMed  CAS  Google Scholar 

  7. Monahan PE, Samulski RJ. Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 2000;6:433–440.

    Article  PubMed  CAS  Google Scholar 

  8. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997;80(11A): 15L–25L.

    Article  PubMed  CAS  Google Scholar 

  9. Givertz MM, Colucci WS. New targets for heart failure therapy: endothelin, inflammatory cytokines, and oxidative stress. Lancet 1998;352(Suppl 1):S134–S138.

    Google Scholar 

  10. Svensson EC, Marshall DJ, Woodard K, et al. Efficient and stable transduction of cardiomyocytes after intramyocardial injection or intracoronary perfusion with recombinant adeno-associated virus vectors. Circulation 1999;99:201–205.

    PubMed  CAS  Google Scholar 

  11. Kaplitt MG, Xiao X, Samulski RJ, et al. Long term gene transfer in porcine myocardium after coronary infusion of and adeno-associated virus vector. Ann Thorac Surg 2000;62:1669–1676.

    Article  Google Scholar 

  12. Kimura B, Mohuczy D, Tang X, Phillips MI. Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensin antisense. Hypertension 2001;37:376–380.

    PubMed  CAS  Google Scholar 

  13. Asahara T, Murohara T, Sullivan A, et al. Isolation of putatitve progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  PubMed  CAS  Google Scholar 

  14. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Med 2001;4:430–436.

    Google Scholar 

  15. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697–705.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson K, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–1402.

    PubMed  CAS  Google Scholar 

  17. Li S, Huang L. Nonviral gene therapy: promises and challenges. Gene Ther 2000;7:31–34.

    Article  PubMed  CAS  Google Scholar 

  18. Akhtar S, Hughes MD, Khan A, et al. The delivery of antisense therapeutics. Adv Drug Del Rev 2000; 44:3–21.

    Article  CAS  Google Scholar 

  19. Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor “decoy strategy” strategy as a means of gene thereapy and study of gene expression in cardiovascular disease. Circ Res 1998; 82: 1023–1028.

    PubMed  CAS  Google Scholar 

  20. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis. Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98: 2800–2804.

    PubMed  CAS  Google Scholar 

  21. Matsui T, Li L, Del Monte F, et al. Adenoviral gene transfer of activated phosphatidylinositol 3’-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999;100:2373–2379.

    PubMed  CAS  Google Scholar 

  22. Melo LG, Agrawal R, Zhang L, et al. Gene Therapy strategy for long term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 2002;105:602–607.

    Article  PubMed  CAS  Google Scholar 

  23. Brauner R, Nonoyama M, Laks H, et al. Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival. J Thorac Cardiovasc Surg 1997;114:923–933.

    Article  PubMed  CAS  Google Scholar 

  24. Simons M, Edeelman ER, DeKeyser JL, Langer R, Rosenberg RD Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle accumulation in vivo. Nature 1992;359:67–70.

    Article  PubMed  CAS  Google Scholar 

  25. Mann MJ, Gibbons GH, Tsao PS, et al. Cell cycle inhibition preserves endothelial function in genetically-engineered rabbit vein grafts. J Clin Invest 1997;99:1295–1301.

    PubMed  CAS  Google Scholar 

  26. Hannon GJ. RNA interference. Nature 2002;418:244–251.

    Article  PubMed  CAS  Google Scholar 

  27. Morishita R, Gibbons GH, Ellison KE, et al. A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 1995;92:5855–5859.

    Article  PubMed  CAS  Google Scholar 

  28. Morishita R, Sugimoto T, Aoki M, et al. In vivo transfection of cis element “decoy” against nuclear factor factor B binding sites prevents myocardial infarction. Nat Med 1997;3:894–899.

    Article  PubMed  CAS  Google Scholar 

  29. Isner JM. Myocardial gene therapy. Nature 2002;415:234–239.

    Article  PubMed  CAS  Google Scholar 

  30. Alexander MY, Webster KA, McDonald PH, Prentice HW. Gene transfer and models of gene therapy for the myocardium. Clin Exp Pharnacol Physiol 1999;26:661–668.

    Article  CAS  Google Scholar 

  31. Wright MJ, Wightman LML, Lilley C, et al. In vivo myocardial gene transfer: Optimization, evaluation and direct comparison of gene transfer vectors. Bas Res Cardiol 2001;96:227–236.

    Article  CAS  Google Scholar 

  32. Losordo DW, Vale PR, Isner JM. Gene therapy for myocardial angiogenesis. Am Heart J 1999;138: S132–S141.

    Article  PubMed  CAS  Google Scholar 

  33. Prentice H, Bishopric N, Hicks MN, et al. Regulated expression of a foreign gene targeted to the ischemic myocardium. Cardiovasc Res 1997;35:567–574.

    Article  PubMed  CAS  Google Scholar 

  34. Shibata T, Giaccia AJ, Brown JM. Development of a hypoxia-responsive vector for tumour-specific gene therapy. Gene Ther 2000;7:493–498.

    Article  PubMed  CAS  Google Scholar 

  35. Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV-2 mediated gene transfer directed to human vascular endothelial cells. Mol Ther 2001;4:174–181.

    Article  PubMed  CAS  Google Scholar 

  36. Lee LY, Patel SR, Hackett NR, et al. Focal angiogen therapy using intramyocardial delivery of an adenovirus vector coding for vascular endothelial growth factor 121. Ann Thorac Surg 2000;69:14–24.

    Article  PubMed  CAS  Google Scholar 

  37. Song YK, Liu F, Chu S, Liu D. Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Human Gene Ther 1997;8:1585–1594.

    CAS  Google Scholar 

  38. Labhasetwar V, Bonadio J, Goldstein S, Chen W, Levy RJ. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J Pharm Sci 1998;87:1347–1350.

    Article  PubMed  CAS  Google Scholar 

  39. Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for non viral gene transfer systems. Gene Ther 2002;9:157–167.

    Article  PubMed  CAS  Google Scholar 

  40. Harrison RL, Byrne BJ, Tung L. Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 1998;435:1–5.

    Article  PubMed  CAS  Google Scholar 

  41. Mann DL. Mechanisms and models in heart failure. A combinatorial approach. Circulation 1999;100: 999–108.

    PubMed  CAS  Google Scholar 

  42. Shyu KG, Wang MT, Wang BW, et al. Intrmyocardial injection of naked DNA encoding HIF-1α/VP16 hybrid to enhnance angiogenesis in an acute myocardial infarction model in the rat. Caridovasc Res 2002;54:576–583.

    Article  CAS  Google Scholar 

  43. Dzau VJ, Mann MJ, Morishita R, Kaneda Y. Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci USA 1996;93:11,421–11,425.

    Article  PubMed  CAS  Google Scholar 

  44. Poston RS, Tran KP, Mann MJ, Hoyt EG, Dzau VJ, Robbins RC. Prevention of ischemically-induced neointimal hyperplasia using ex vivo antisense oligodeoxynucleotides. J Heart Lung Transplant 1998;17:349–355.

    PubMed  CAS  Google Scholar 

  45. Krasnykh VN, Douglas JT, van Beusechem VW. Gene targeting of adenoviral vectors. Mol Ther 2000;1: 391–405.

    Article  PubMed  CAS  Google Scholar 

  46. Mah C, Byrne BJ, Flotte TR. Virus-based gene delivery systems. Clin Pharmacokinet 2002;41: 901–911.

    Article  PubMed  CAS  Google Scholar 

  47. Hartigan-O’Connor D, Amalfitano A, Chamberlain JS. Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J Virol 1999;73:7835–7841.

    PubMed  CAS  Google Scholar 

  48. Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson JM. Immune response to adenovirus and adenoassociated virus in humans. Gene Ther 1999;6:1574–1583.

    Article  PubMed  CAS  Google Scholar 

  49. Yan Z, Zhang Y, Duan D, Engelheardt JF. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA 2000;97:6716–6721.

    Article  PubMed  CAS  Google Scholar 

  50. Hu W-S, Pathak VK. Design of retroviral vectors and helper cells for gene therapy. Pharmacol Rev 2000; 52:493–511.

    PubMed  CAS  Google Scholar 

  51. Daly G, Chernajovski Y. Recent developments in retroviralk-mediated gene transduction. Mol Ther 2000; 2:423–434.

    Article  PubMed  CAS  Google Scholar 

  52. Sakoda T, Kasahara N, Hamamori Y, Kedes L. A high titer lentiviral production system mediates transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 1999;31:2037–2047.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao J, Pettigrew GJ, Thomas J, et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 2002;97:348–358.

    Article  PubMed  CAS  Google Scholar 

  54. Coffin RS, Howard MK, Cummings DV, et al. Gene delivery to the heart in vivo and to cardiac myocytes and vascular smooth muscle cells in vitro using herpes virus vectors. Gene Ther 1996;3:560–566.

    PubMed  CAS  Google Scholar 

  55. Schlesinger S. Alphavirus vectors: development and potential therapeutic applications. Expert Opin Biol Ther 2001;1:177–191.

    Article  PubMed  CAS  Google Scholar 

  56. Datwyler DA, Eppenberger HM, Koller D, Bailey JE, Magyar JP. Efficient gene delivery into adult cardiomyocytes by recombinant Sindis virus. J Mol Med 1999;77:859–864.

    Article  PubMed  CAS  Google Scholar 

  57. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002;105:732–738.

    Article  PubMed  CAS  Google Scholar 

  58. Griffiths I, Binley K, Iqball S, et al. The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 2000;7:255–262.

    Article  PubMed  CAS  Google Scholar 

  59. Magnani M, Rossi L, Fraternale A, et al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002;9:749–751.

    Article  PubMed  CAS  Google Scholar 

  60. Funk M, Krumholz HM. Epidemiologic and economic impact of advanced heart failure. J Cardiovasc Nurs 1996;10:1–10.

    PubMed  CAS  Google Scholar 

  61. Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. Am J Pathol 2000;190: 255–266.

    Article  CAS  Google Scholar 

  62. Yellon DM, Baxter GF. Reperfusion injury revisited. Is there a role for growth factor signalling in limiting lethal reperfusion injury? Trends Cardiovasc Med 2000;9:245–249.

    Article  Google Scholar 

  63. Braunwald E, Kloner RA. Myocardial reperfusion: a double edged sword. J Clin Invest 1985;76: 1713–1719.

    PubMed  CAS  Google Scholar 

  64. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodelling in rat myocardial infarction. Am J Physiol 1991;260:H1406–H1414.

    PubMed  CAS  Google Scholar 

  65. Peterson JT, Li H, Dillon L, Bryant JW. Evolution of metlloprotease and tissue inhibitor expression during heart failure progression in the infarcted heart. Cardiovasc Res 2000;46:307–315.

    Article  PubMed  CAS  Google Scholar 

  66. Mehta JL, Li DY. Inflammation in ischemic heart disease: Response to tissue injury or a pathogenic villain? Cardiovasc Res 1999;43:291–299.

    Article  PubMed  CAS  Google Scholar 

  67. Singal PK, Khaper N, Palace V, Kumar D. The role of oxidative stress in the genesis of heart disease. Cardiovasc Res 1998;40:436–442.

    Article  Google Scholar 

  68. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–395.

    Article  PubMed  CAS  Google Scholar 

  69. Ware JH, Simons M. Angiogenesis in ischemic heart disease. Nat Med 1997;3:158–164.

    Article  PubMed  CAS  Google Scholar 

  70. Tio RA, Tkebuchava T, Scheurermann TH, et al. Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral blood flow to ischemic myocardium. Human Gene Ther 1999;10: 2953–2960.

    Article  CAS  Google Scholar 

  71. Mack CA, Patel SA, Schwarz EA, et al. Biological bypass with the use of adenovirus-mediated transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 1998;115:168–177.

    Article  PubMed  CAS  Google Scholar 

  72. Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534–539.

    Article  PubMed  CAS  Google Scholar 

  73. Ueno H, Li JJ, Masuda S, Qi Z, Yamamoto H, Takeshita A. Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 1997;17:2453–2460.

    PubMed  CAS  Google Scholar 

  74. Ueda H, Sawa Y, Matsumoto K, et al. Gene transfection of hepatocyte growth factor attenuates reperfusion injury in the heart. Ann Thorac Surg 1999;67:1726–1731.

    Article  PubMed  CAS  Google Scholar 

  75. Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 1999;68:830–837.

    Article  PubMed  CAS  Google Scholar 

  76. Hammond HK, McKirman MD. Angiogenic gene therapy for heart disease: a review of animal studies and clinical trials. Cardiovasc Res 2001;49:561–567

    Article  PubMed  CAS  Google Scholar 

  77. Tabata H, Silver M, Isner JM. Arterial gene transfer of acidic fibroblast growth factor for therapeutic angiogenesis in vivo: critical role of secretion signal in use of naked DNA. Cardiovasc Res 1997;25: 470–479.

    Article  Google Scholar 

  78. Taniyama Y, Morishita R, Aoki M, et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension 2002;40:47–53.

    Article  PubMed  CAS  Google Scholar 

  79. Aoki M, Morishita R, Taniyama Y, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by hepatocyte growth factor: potential gene therapy for ischemic diseases. J Atheroscler Thromb 2000;7:71–76.

    PubMed  CAS  Google Scholar 

  80. Vale PR, Losordo DW, Milliken CE, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 2001;103:2138–2143.

    PubMed  CAS  Google Scholar 

  81. Grines CL, Watkins MW, Helmer G, et al. Angiogenic gene therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002;105:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  82. Bashir R, Vale PR, Isner JM, Losordo DW. Angiogenic gene therapy: pre-clinical studies and phase I clinical data. Kideny Int 2002;61(Suppl 1):110–114.

    Article  Google Scholar 

  83. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 1999;68: 1905–1912.

    Article  PubMed  CAS  Google Scholar 

  84. Williams RS, Benjamin IJ. Protective responses of the ischemic myocardium. J Clin Invest 2000;106: 813–818.

    PubMed  CAS  Google Scholar 

  85. Li Q, Bolli R, Qiu Y, Tang X-L, Guo Y, French BA. Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 2001;103:1893–1898.

    PubMed  CAS  Google Scholar 

  86. Chen EP, Bittner HB, Davis RD, Van Trigt P, Folz RJ. Physiological effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 1998;115:450–458.

    Article  PubMed  CAS  Google Scholar 

  87. Agrawal RS, Muangman S, Melo LG, et al. Recombinant adeno-associated virus mediated antioxidant enzyme delivery as preventive gene therapy against ischemia-reperfusion injury of the rat myocardium. Mol Ther 2001;3: A837.

    Google Scholar 

  88. Li Q, Bolli R, Qiu Y, Tang XL, Murphree SS, French BA. Gene therapy with extracellular superoxide dismutase attenuates myocardial stunning in conscious rabbits. Circulation 1998;98:1438–1448.

    PubMed  CAS  Google Scholar 

  89. Zhu HL, Stewart AS, Taylor MD. Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury. Mol Ther 2000;2:470–475.

    Article  PubMed  CAS  Google Scholar 

  90. Yoshida T, Watanabe M, Engelman DT, et al. Transgenic mice overespressing glutathione peroxidase are resistant to myocardial reperfusion injury. J Mol Cell Cardiol 1996;28:1759–1767.

    Article  PubMed  CAS  Google Scholar 

  91. Suzuki K, Sawa Y, Kaneda Y. In vivo gene transfer of heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 1997;99:1645–1650.

    PubMed  CAS  Google Scholar 

  92. Vander Heide RS. Increased expression of HSP27 protects canine myocytes from simulated ischemiareperfusion injury. Am J Physiol 2002;282:H935–H941.

    Google Scholar 

  93. Chatterjee S, Stewart AS, Bish LT, et al. Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic ischemic heart failure. Circulation 2002;106(Suppl):I212-I217.

    Google Scholar 

  94. Yang Z, Cerniway RJ, Byford AM. Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol 2002;282:H949–H955.

    CAS  Google Scholar 

  95. Agata J, Chao L, Chao J. Kallikrein gene delivery improves cardiac reserve and attenuates remodeling after myocardial infarction. Hypertension 2002;40:653–659.

    Article  PubMed  CAS  Google Scholar 

  96. Holly TA, Drincic A, Byun Y, Nakamura S, Kloche FJ, Cryns VL. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999;31:1709–1715.

    Article  PubMed  CAS  Google Scholar 

  97. Chen H, Mohuczy D, Li D, et al. Protection against ischemia/reperfusion injury and myocardial dysfunction by antisense-oligodeoxyynucleotide directed at angiotensin-converting enzyme mRNA. Gene Ther 2001;8: 804–810.

    Article  PubMed  CAS  Google Scholar 

  98. Stepkowski SM. Development of antisense oligodeoxynucleotides for transplantation. Curr Opin Mol Ther 2000;2:304–317.

    PubMed  CAS  Google Scholar 

  99. Poston RS, Mann MJ, Hoyt EG, Ennen M, Dzau VJ, Robbins RC. Antisense oligodeoxynucleotides prevent acute cardiac allograft rejection via a novel, non-toxic, highly efficient transfection method. Transplantation 1999; 68:825–832.

    Article  PubMed  CAS  Google Scholar 

  100. St. John Sutton MG, Sharpe N. left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation 2000;101:2981–2988.

    Google Scholar 

  101. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215–262.

    PubMed  CAS  Google Scholar 

  102. Asakura M, Kitakaze M, Taskashima S, et al. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Med 2002;8:35–40.

    Article  PubMed  CAS  Google Scholar 

  103. Pachori AS, Numan MT, Ferrario CM, Diz DM, Raizada MK, Katovich MJ. Blood pressure-independent attenuation of cardiac hypertrophy by AT(1)R-AS gene therapy. Hypertension 2002;20:969–975.

    Article  CAS  Google Scholar 

  104. Taigen T, Windt LJ, Lim HW, Molkentin JD. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci USA 2000;97:1196–1201.

    Article  PubMed  CAS  Google Scholar 

  105. Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997; 100:1991–1999.

    Article  PubMed  CAS  Google Scholar 

  106. Antos CL, McKinsey TA, Frey N, et al. Activated glycogen synthase kinase 3-β suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 2002;99:907–912.

    Article  PubMed  CAS  Google Scholar 

  107. Nozato T, Ito H, Watanabe M, et al. Overexpression of Cdk inhibitor p16 by adenovirus vector inhibits cardiac hypertrophy in vitro and in vivo: a novel strategy for the gene therapy of cardiac hypertrophy. J Mol Cell Cardiol 2001;33:1493–1504.

    Article  PubMed  CAS  Google Scholar 

  108. Tamamori M, Ito H, Hiroe M, Terada Y, Marumo F, Ikeda M. Essential roles for G1 cyclin-dependent kinase activity in development of cardiomyocyte hypertrophy. Am J Physiol 1998;275:H2036–H2040.

    PubMed  CAS  Google Scholar 

  109. Lin KF, Chao L, Chao J. Prolonged reduction of high blood pressure with human nitric oxide synthase delivery. Hypertension 1997;30:307–3113.

    PubMed  CAS  Google Scholar 

  110. Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery attenuates hypertension, cardiac hypertrophy and renal injury in salt-sensitive rats. Hum Gene Ther 1998;9:1429–1438.

    PubMed  CAS  Google Scholar 

  111. Yoshida H, Zhang JJ, Chao L, Chao J. Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 2000;35:25–31.

    PubMed  CAS  Google Scholar 

  112. Shi Q, Raffi S, Wu MH, et al. Evidence for circulating bone marrow derived endothelial cells. Blood 1998;92:362–367.

    PubMed  CAS  Google Scholar 

  113. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization Circ Res. 1999;85:221–228.

    PubMed  CAS  Google Scholar 

  114. Shintani S, Murohara T, Ikeda H, et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 2001;103:897–903.

    Article  PubMed  CAS  Google Scholar 

  115. Kawamoto A, Gwon H-C, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001;103:634–637.

    PubMed  CAS  Google Scholar 

  116. Ikenaga S, Hamano K, Nishida M, et al. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exdercise capacity in a rat ischemic hindlimb model. J Surg Res 2001;96:277–283.

    Article  PubMed  CAS  Google Scholar 

  117. Murohara T, Ikeda H, Duan J, et al. Transplanted chord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000;105:1527–1536.

    Article  PubMed  CAS  Google Scholar 

  118. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells foe therapeutic neovascularization. Proc Natl Acad Sci USA 2000;97:3422–3427.

    Article  PubMed  CAS  Google Scholar 

  119. Fuchs S, Baffour R, Zhou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37:1726–1732.

    Article  PubMed  CAS  Google Scholar 

  120. Vasa M, Fichtscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 2001;89:E1–E7.

    Article  PubMed  CAS  Google Scholar 

  121. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI3-kinase/Akt pathway. J Clin Invest 2001;108:391–397.

    Article  PubMed  CAS  Google Scholar 

  122. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incroporation of bone marrow-derived endothelial progenitor cells. Circulation 2002; 105:3017–3024.

    Article  PubMed  CAS  Google Scholar 

  123. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. New Engl J Med 2001;344:175–1757.

    Article  Google Scholar 

  124. Soonpaa MH, Field L. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998; 83:15–26.

    PubMed  CAS  Google Scholar 

  125. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737–1746.

    Article  PubMed  CAS  Google Scholar 

  126. Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease? Circulation 2000;101:e192–e197.

    Google Scholar 

  127. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improves performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.

    Article  PubMed  CAS  Google Scholar 

  128. Min JY, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 2002;92:288–296.

    Article  PubMed  CAS  Google Scholar 

  129. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(Suppl):II247-II256.

    Google Scholar 

  130. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.

    Article  PubMed  CAS  Google Scholar 

  131. Hakuno D, Fukuda K, Makino S, et al. Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation 2002;105:380–386.

    Article  PubMed  CAS  Google Scholar 

  132. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:710–705.

    Article  Google Scholar 

  133. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl Acad Sci USA 2001;98:10,344–10,349.

    Article  PubMed  CAS  Google Scholar 

  134. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346:5–15.

    Article  PubMed  Google Scholar 

  135. Muller P, Pfeiffer P, Koglin J, et al. Cardiomyocytes of non cardiac origin in myocardial biopsies of human transplanted hearts Circulation 2002;106:31–35.

    Article  PubMed  Google Scholar 

  136. Taylor DA, Hruban R, Rodriguez R, Goldschmidt-Clermont PJ. Cardiac chimerism as a mechanism for self-repair. Does it happen and if so to what degree. Circulation 2002;106:2–4.

    Article  PubMed  Google Scholar 

  137. Laflamme MA, Myerson D, Saffitz JE, Murry CE. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002;90:634–640.

    Article  PubMed  CAS  Google Scholar 

  138. Strauer BE, Brehm M, Zeus T, et al. Myocardial regeneration after intracoronary transplantation of human autologous stem cells following acute myocardial infarction. Dtsch Med Wochenschr 2001;126: 932–938.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Pachori, A.S., Melo, L.G., Dzau, V.J. (2005). Molecular Therapeutic Approaches for Myocardial Protection. In: Rai, M.K., Paton, J.F.R., Kasparov, S., Katovich, M.J. (eds) Cardiovascular Genomics. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-883-8:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-883-8:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-400-5

  • Online ISBN: 978-1-59259-883-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics