Skip to main content

Particles Under a Central Force Field

  • Chapter
  • First Online:
Mathematical Models with Singularities

Part of the book series: Atlantis Briefs in Differential Equations ((ABDE,volume 1))

  • 882 Accesses

Abstract

A force field in \({\mathbb R}^N\) is called central or radially symmetric if its magnitude only depends on the distance to the origin and its direction is proportional to the vector position, that is, it always points to the origin. The study of a radially symmetric system is reduced to a second-order scalar equation with a repulsive singularity. We review some of the most interesting models with radial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The history of solar sails goes back at least to Kepler. Nowadays, NASA is actively working on the practical use of solar sailing in current space mission designs (see for example the NanoSail-D mission), with very positive results [24]. The use of solar sailing as an effective propulsion system for space travelling appears in many science-fiction books and films. Perhaps the most known author is Arthur C. Clarke, who has a nice story entitled “The Wind from the Sun”. As a concession to our freaky side, in the film series Star Trek we can find the Bajoran Lightship as a spacecraft propelled by sunlight, whereas in Stars Wars (Episode II), Count Dooku (better known as Darth Tyranus) owns a Punworcca 116-class interstellar solar sailer.

  2. 2.

    Other variants leading to the same model are plausible. In particular, on a solar sail we may control the effective cross section \(\sigma (t)\) as a function of time.

References

  1. Andersen, C.M., Von Baeyer, H.C.: On classical scalar field theories and the relativistic Kepler problem. Ann. Phys. 62, 120–134 (1971)

    Article  Google Scholar 

  2. Bekov, A.A.: Periodic solutions of the Gylden-Merscherskii problem. Astron. Rep. 37(6), 651–654 (1993)

    Google Scholar 

  3. Boscaggin, A., Zanolin, F.: Second-order ordinary differential equations with indefinite weight: the Neumann boundary value problem. Ann. Mat. Pura Appl. (in press), http://dx.doi.org/10.1007/s10231-013-0384-0

  4. Bravo, J.L., Torres, P.J.: Periodic solutions of a singular equation with indefinite weight. Adv. Nonlinear Stud. 10, 927–938 (2010)

    MATH  MathSciNet  Google Scholar 

  5. Boyer, T.H.: Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential. Am. J. Phys. 72(8), 992–997 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, J., Torres, P.J., Wang, F.: Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem, Discret. Contin. Dyn. Syst. A 35(5), 1921–1932 (2015)

    Google Scholar 

  7. Deprit, A.: The secular accelerations in Gylden’s problem. Celest. Mech. 31, 1–22 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diacu, F., Selaru, D.: Chaos in the Gyldén problem. J. Math. Phys. 39, 6537–6546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fonda, A., Toader, R.: Periodic orbits of radially symmetric Keplerian-like systems: a topological degree approach. J. Differ. Equ. 244, 3235–3264 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fonda, A., Toader, R.: Periodic orbits of radially symmetric systems with a singularity: the repulsive case. Adv. Nonlinear Stud. 11, 853–874 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Fonda, A., Toader, R.: Periodic solutions of radially symmetric perturbations of Newtonian systems. Proc. Am. Math. Soc. 140, 1331–1341 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fonda, A., Ureña, A.J.: Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discret. Contin. Dyn. Syst. 29, 169–192 (2011)

    Article  MATH  Google Scholar 

  13. Greiner, W.: Classical Mechanics: Point Particles and Relativity. Springer, New York (2004)

    Google Scholar 

  14. Halk, R., Torres, P.J.: On periodic solutions of second-order differential equations with attractive-repulsive singularities. J. Differ. Equ. 248, 111–126 (2010)

    Article  Google Scholar 

  15. Hau, L.V., Burns, M.M., Golovchenko, J.A.: Bound states of guided matter waves: an atom and a charged wire. Phys. Rev. A 45(9), 6468–6478 (1996)

    Article  Google Scholar 

  16. King, C., Lésniewski, A.: Periodic motion of atoms near a charged wire. Lett. Math. Phys. 39, 367–378 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lei, J., Zhang, M.: Twist property of periodic motion of an atom near a charged wire. Lett. Math. Phys. 60, 9–17 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Luk’yanov, L.G.: Conservative two-body problem with variable masses. Astron. Lett. 31(8), 563–568 (2005)

    Article  Google Scholar 

  19. Muñoz, G., Pavic, I.: A Hamilton-like vector for the special-relativistic Coulomb problem. Eur. J. Phys. 27, 1007–1018 (2006)

    Article  MATH  Google Scholar 

  20. Pal, A., Selaru, D., Mioc, V., Cucu-Dumitrescu, C.: The Gyldén-type problem revisited: more refined analytical solutions. Astron. Nachr. 327, 304–308 (2006)

    Article  MATH  Google Scholar 

  21. Saslaw, W.C.: Motion around a source whose luminosity changes. Astrophys. J. 226, 240–252 (1978)

    Article  Google Scholar 

  22. Selaru, D., Cucu-Dumitrescu, C., Mioc, V.: On a two-body problem with periodically changing equivalent gravitational parameter. Astron. Nachr. 313, 257–263 (1993)

    MathSciNet  Google Scholar 

  23. Torres, P.J., Ureña, A.J., Zamora, M.: Periodic and quasi-periodic motions of a relativistic particle under a central force field. Bull. Lond. Math. Soc. 45(1), 140–152 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vulpetti, G., Johnson, L., Matloff, G.L.: Solar Sails. A Novel Approach to Interplanetary Travel. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Torres, P.J. (2015). Particles Under a Central Force Field. In: Mathematical Models with Singularities. Atlantis Briefs in Differential Equations, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-106-2_4

Download citation

Publish with us

Policies and ethics