Skip to main content

Electron Beam Focusing by Means of a Periodic Magnetic Field

  • Chapter
  • First Online:
Mathematical Models with Singularities

Part of the book series: Atlantis Briefs in Differential Equations ((ABDE,volume 1))

  • 897 Accesses

Abstract

In this chapter, we consider the dynamics of an electron beam guided by an axially-symmetric periodic magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Busch’s Theorem can be seen as the equivalent of conservation of angular momentum. It states that the angular velocity of the electron depends only on the difference of magnetic fluxes at the initial point (at the cathode) and the point under consideration.

  2. 2.

    It seems that the mathematical community began using this expression after the 1965 seminal paper by Ding [7] (he speaks of a periodic Brillouin focusing system). As far as I know, Leon Brillouin never proposed or studied this equation. In this sense, the nomenclature can be a bit misleading from a historical point of view, but certainly has a physical meaning.

  3. 3.

    The classical way to compute numerically the eigencurves of the stability diagram of the Mathieu equation is to expand the solution as a Fourier series. Then the coefficients must verify an infinite determinant known as Hill’s determinant. Truncating this determinant, one obtains the stability intervals with arbitrary accuracy; see for instance [2].

  4. 4.

    See Definition A.3.

  5. 5.

    See Figs. 14 and 15 in [16] and the paragraph after Eq. (15) in [15].

  6. 6.

    If desingularization is not possible, one should use a numerical method with an adaptative step.

  7. 7.

    The equation was numerically integrated with the command NDsolve of Mathematica\(^{TM}\), then the orbit was drawn with the command ParametricPlot. To be sure that it is a true \(2\pi \)-periodic solution, the picture shows the curve drawn in the interval \([0,20\pi ]\) (ten periods).

References

  1. Anderson, O.A.: Accurate iterative analysis of the K-V equations. In: Proceedings of  2005 Particle Accelerator Conference, pp. 3535–3537 (2005)

    Google Scholar 

  2. Arscott, F.M.: Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  3. Bevc, V., Palmer, J.L., Süsskind, C.: On the design of the transition region of axi-symmetric magnetically focused beam valves. J. British Inst. Radio Eng. 18, 696–708 (1958)

    Google Scholar 

  4. Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations. Springer Briefs in Mathematics. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  5. Chu, J., Li, M.: Twist periodic solutions of second order singular differential equations. J. Math. Anal. Appl. 355(2), 830–838 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. del Pino, M., Manásevich, R., Montero, A.: \(T\)-periodic solutions for some second order differential equations with singularities. Proc. R. Soc. Edinb. Sect. A 120, 231–243 (1992)

    Article  MATH  Google Scholar 

  7. Ding, T.: A boundary value problem for the periodic Brillouin focusing system, Acta Sci. Nat. Univ. Pekinensis 11(1), 31–38 (1965) [In Chinese]

    Google Scholar 

  8. Fabry, C.: Periodic solutions of the equation \(x^{\prime \prime } + f(t; x) = 0\), Séminaire de Mathématique (Louvain-la-Neuve), 117 (1987)

    Google Scholar 

  9. Garrione, M., Zamora, M.: Periodic solutions of the Brillouin electron beam focusing equations. Commun. Pure Appl. Anal. 13, 961–974 (2014)

    MATH  MathSciNet  Google Scholar 

  10. Harker, K.J.: Periodic focusing of beams from partially shielded cathodes, IRE Trans. Electron Devices 2, 13–19 (1955)

    Google Scholar 

  11. Kapchinskij, I., Vladimirskij, V.: Limitations of proton beam current in a strong focusing linear accelerator associated with the beam space charge. In: Proceedings of the International Conference on High Energy Accelerators and Instrumentation, p. 274. CERN Scientific Information Service, Geneva (1959)

    Google Scholar 

  12. Lee, S.Y.: Accelerator Physics, 2nd edn. Word Scientific Publishing, New Jersey (2004)

    Book  Google Scholar 

  13. Lee, E.P.: Precision matched solution of the coupled beam envelope equations for a periodic quadrupole lattice with space charge. Phys. Plasmas 9, 4301–4308 (2002)

    Article  MathSciNet  Google Scholar 

  14. Lund, S.M., Chilton, S.H., Lee, E.P.: Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices. Phys. Rev. ST Accel. Beams 9, 064201 (2006)

    Article  Google Scholar 

  15. Mendel, J.T.: Magnetic focusing of electron beams. Proc. Inst. Radio Eng. 43, 327–331 (1955)

    Google Scholar 

  16. Mendel, J.T., Quate, C.F., Yocom, W.H.: Electron beam focusing with periodic permanent magnetic fields. Proc. Inst. Radio Eng. 42, 800–810 (1954)

    Google Scholar 

  17. Reiser, M.: Theory and Design of Charged Particle Beams, 2nd edn. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  18. Torres, P.J.: Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system. Math. Methods Appl. Sci. 23, 1139–1143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Torres, P.J.: Twist solutions of a Hill’s equation with singular term. Adv. Nonlinear Stud. 2, 279–287 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Torres, P.J.: Existence of one-signed periodic solutions of some second order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equ. 190, 643–662 (2003)

    Article  MATH  Google Scholar 

  21. Torres, P.J., Zhang, M.: A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle. Math. Nachr. 251, 101–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Torres, P.J., Zhang, M.: Twist periodic solutions of repulsive singular equations. Nonlinear Anal. 56, 591–599 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsimring, S.E.: Electron Beams and Microwave Vacuum Electronics. Wiley, Hoboken (2007)

    Google Scholar 

  24. Ye, Y., Wang, X.: Nonlinear differential equations in electron beam focusing theory. Acta Math. Appl. Sin. 1, 13–41 (1978) (In Chinese)

    Google Scholar 

  25. Zhang, M.: Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl. 203, 254–269 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, M.: A relationship between the periodic and the Dirichlet BVPs of singular differential equations. Proc. R. Soc. Edinb. Sect. A 128, 1099–1114 (1998)

    Article  MATH  Google Scholar 

  27. Zhang M.: Optimal conditions for maximum and antimaximum principles of the  periodic solution problem, Bound. Value Probl. 2010, 410986 (26pp.) (2010)

    Google Scholar 

  28. Zhang, M., Li, W.G.: A Lyapunov-type stability criterion using \(L^\alpha \) norms. Proc. Am. Math. Soc. 130, 3325–3333 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Torres .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Atlantis Press and the authors

About this chapter

Cite this chapter

Torres, P.J. (2015). Electron Beam Focusing by Means of a Periodic Magnetic Field. In: Mathematical Models with Singularities. Atlantis Briefs in Differential Equations, vol 1. Atlantis Press, Paris. https://doi.org/10.2991/978-94-6239-106-2_6

Download citation

Publish with us

Policies and ethics