Skip to main content

Modeling Gene Expression Dynamics by Kernel Auto-RegressiveModels for Time-Course Microarray Data

  • Chapter
Intelligence for Nonlinear Dynamics and Synchronisation

Part of the book series: Atlantis Computational Intelligence Systems ((ATLANTISCIS,volume 3))

  • 498 Accesses

Abstract

The DNA microarray technology has shown its extensive applications in clinical research and has emerged as a powerful tool for understanding gene expressions through a simultaneous study of thousands of genes. A successful modeling of gene profiles can provide a pathway of revealing gene regulations from the microarray data. Therefore, modeling the gene expression networks has attracted increasing interests in computational biology community. We propose a nonlinear dynamical system based on kernel auto-regressive model in this application. The proposed method can analyze the nonlinear mapping among the gene expression dynamics by using the kernels. A sparse model is employed so as to decrease the computational cost and improve the illustration ability of the method. We use the kernel recursive least squares, which is an approximation of the kernel principal component analysis, in building the sparse model. By presenting simulation results, we show that dynamical nonlinear networks are attractive and suitable for modeling gene expression profiles. A range of challenging research problems will also be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (2006), Stanford Microarray Database, http://genome-www5.stanford.edu.

  2. Bishop, C.M., (1995), Neural networks for pattern recognition, (Oxford University press, UK).

    Google Scholar 

  3. Bishop, C.M., (2006), Pattern recognition and machine learning, (Springer, Singapore).

    Google Scholar 

  4. Csato, L. and Opper, M., (2002), Sparse on-line Gaussian processes, Neural Computation ,14, pp. 641–668.

    Article  MATH  Google Scholar 

  5. Darvish, A., Hakimzadeh, R. and Najarian, K., (2004), Discovering dynamic regulatory pathway by applying an auto regressiive model to time series DNA microarray data, in Proceeding of 26th Annual International Conference of the IEEE EMBS, (San Francisco, USA), pp. 1–8.

    Google Scholar 

  6. Engel, Y., Mannor, S. and Meir, R., (2004), The kernel recursive least squares algorithm, IEEE journal of signal processing, 52, pp. 2275–2285.

    Article  MathSciNet  Google Scholar 

  7. Fujita, A., Sato, J.R., Garay-Malpartida, H.M., Yamaguchi, R., Miyano, S., Sogayar, M.C. and Ferreira, C.E., (2007), Modelling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology, I, 39.

    Google Scholar 

  8. Grasser, K.D. (2006). Regulation of transcription in plants (Blackwell Publishing Ltd, Oxford, UK).

    Google Scholar 

  9. Hastie, T., Tibshirani, R. and Friedman, J., (2001), The element of statistical learning, (Springer, New York, NY, USA).

    Google Scholar 

  10. Jazwinski, A.H., (1970), Stochastic processes and filtering theory, (Academic Press, New York, USA).

    Google Scholar 

  11. Kalman, R.E., (1960), A new approach to linear filtering and prediction problem, Transactions of the ASME-Journal of Basic Engineering, 82, Series D, pp. 35–45.

    Google Scholar 

  12. Latchman, D., (1995), Gene Regulation: a eukaryotic perspective, (Chapman and Hall, London, UK).

    Google Scholar 

  13. Lutkepohl, H., (1985), Comparison of criteria for estimating the order of a vector autoregressive process, Journal of Time Series Analysis, 6, pp. 35–52.

    Article  MathSciNet  Google Scholar 

  14. Neumaier, A. and Schneider, T., (2001), Estimation of parameters and eigenmodes of multivariate autoregressive models, ACM transactions on mathematical software, 27, 1, pp. 27–57.

    Article  MATH  Google Scholar 

  15. Pandit, S.M. and Wu, S.M., (1983), Time series and system analysis with applications, (John Wiley, New York, USA).

    Google Scholar 

  16. Phong, C. and Singh, R., (2008), Missing value estimation for time series microarray data using linear dynamical systems modeling, in Proceeding of 22nd Int. Conf. on Advanced Information Networking and Application, pp. 814–819.

    Google Scholar 

  17. Quach, M., Brunel, N. and d’Alche Buc, F., (2007), Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference, Bioinformatics, 23, 23, pp. 3209–3216.

    Google Scholar 

  18. Rasmussen, C.E. and Williams, C., (2006), Gaussian processes for machine learning, (MIT press, New York, USA).

    Google Scholar 

  19. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O., (1995), Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science, 270, pp. 467–470.

    Article  Google Scholar 

  20. Schneider, T., (2006), ARfit: aMatlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models, http://www.gps.caltech.edu/~tapio/arfit.

  21. Scholkopf, B. and Smola, A.J., (2002), Learning with kernels, (The MIT Press, USA).

    Google Scholar 

  22. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D. and Friedman, K., (2003), Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nature Genetics, 34, 2, pp. 166–176.

    Article  Google Scholar 

  23. Shan, Y., Deng, G. and Zou, J., (2008), Recent advances in image analysis and data mining for DNA microarray processing, chap. 1, (Nova Science Publisher, New York, USA).

    Google Scholar 

  24. Speed, T.P., (2003), Statistical analysis of gene expression microarray data, (Chapman and Hall, Florida, USA).

    Google Scholar 

  25. Storey, J.D., Xiao, W. and Leek, J.T., (2004), Significance analysis of time course microarray experiments, http://www.bepress.com/uwbiostat/paper232.

  26. Walker, G., (1931), On periodicity in series of related terms, Proceedings of the royal society of London, 131, pp. 518–532.

    Article  Google Scholar 

  27. Wan, E.A. and der Merwe, R.V., (2001), The Unscented Kalman filter, chap. 7, (John Wiley and Sons. Inc., New York, USA).

    Google Scholar 

  28. Wingate, D., (2006), Resources: kernel recursive least squares, http://web.mit.edu/~wingated/www/resources.html.

  29. Wingate, D. and Singh, S., (2006), Kernel predictive linear Gaussian models for nonlinear stochastic dynamical systems, in Proceeding of the 23rd Int. Conf. on Machine Learning, (Pittsburgh, USA).

    Google Scholar 

  30. Wu, F.X., Zhang, W.J. and Kusalik, A.J., (2004), Modeling gene expression from microarray expression data with state-space equations, in Proceeding of Pacific symposium on Biocomputing, Vol. 9, pp. 581–592.

    Google Scholar 

  31. Yamaguchi, R., Yamashita, S. and Higuch, T., (2005), Estimatinng gene networks with cDNA microarray data using state-space models, in Proceeding of Int. Conf. on Computational Science and its applications, Vol. 3482, pp. 381–388.

    Google Scholar 

  32. Yang, Y.H., Buckley, M.J. and Speed, T.P., (2001), Analysis of cDNA microarray images, Briefings on Bioinformatics, 2, 4, pp. 341–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Atlantis Press/World Scientific

About this chapter

Cite this chapter

Young, S. (2010). Modeling Gene Expression Dynamics by Kernel Auto-RegressiveModels for Time-Course Microarray Data. In: Intelligence for Nonlinear Dynamics and Synchronisation. Atlantis Computational Intelligence Systems, vol 3. Atlantis Press. https://doi.org/10.2991/978-94-91216-30-5_4

Download citation

Publish with us

Policies and ethics

Societies and partnerships