Skip to main content

Characteristics of Agricultural System and Energy Resources

  • Chapter
Great Plains Regional Technical Input Report

Part of the book series: NCA Regional Input Reports ((NCARIR))

  • 233 Accesses

Abstract

The Great Plains produces much of the nation’s food and fiber. The region produces nearly two-thirds of the nation’s wheat, more than half its beef, a fifth of its corn, a quarter of its cotton, four-fifths of its grain sorghum, and a sixth of its pork (Duncan et al. 1995). While wheat and beef production are important across most or all of the Great Plains states, one or more of the states also contribute significantly to production of other animal (hogs, dairy, broilers - i.e. chickens raised for meat, and sheep) and crop (corn, soybean, cotton, sorghum, canola and other) commodities (Table 2.1). Changes in land use management, climate, and hydrological extremes will impact how natural resources will be utilized and sustained over time in the Great Plains, affecting the region’s social wellbeing and ecosystem integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ainsworth, E. A., & Long, S. . (2005). What have we leared from 15 years of free-air CO2 enrichment (FACE)? A meta-analyic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351–372.

    Article  Google Scholar 

  • Blanco-Canqui, H., Schlegel, A. J., & Heer, W. F. (2011). Soil-profile distribution of carbon and associated properties in no-till along a precipitation gradient in the central Great Plains. Agriculture, Ecosystems and Environment, 144(1), 107–116.

    Article  Google Scholar 

  • Classen, R., Carriazo, F., Cooper, J. C., Hellerstein, D., & Udea, K. (2011). Grassland to Cropland Conversion in the Northern Plains: The Role of Crop Insurance, Commodity, and Disaster Programs, ERR-120.

    Google Scholar 

  • COGCC. (2012). Water Sources and Demand for the Hydraulic Fracturing of Oil and Gas Wells in Colorado from 2010 through 2015 (p. 9).

    Google Scholar 

  • Croissant, R. L., Peterson, G. A., & Westfall, D. G. (2008). Dryland Cropping Systems: Fact Sheet No. 0.516. Colorado State University Extension Crop Series Factsheet No. 0.516 (pp. 11–13). Retrieved from http://www.ext.colostate.edu/pubs/crops/00516.pdf

    Google Scholar 

  • Dale, V. H. (1997). The relationship between land-use change and climate change. Ecological Applications, 7, 753–769.

    Article  Google Scholar 

  • Duncan, M., Fisher, D., & Drabenstott, M. (1995). Planning for a sustainable future in the Great Plains. In D. A. Whilhite, D. A. Wood, & K. H. Smith (Eds.), Proceedings of the Symposium – Planning for a sustainable Future: The Case of the North American Great Plains (pp. 23–42).

    Google Scholar 

  • Elam, T. E. (2007). Is Organic Beef and Dairy Production a Responsible Use of Our Resources ? In 22nd Southwest Nutrition and Management Conference (pp. 66–75). Tempe, AZ. Retrieved from http://ag.arizona.edu/ans/swnmc/Proceedings/2007/Elam_2007SWNMC.pdf

    Google Scholar 

  • Farag, A. T., Radwan, A. H., Sorour, F., El Okazy, A., El-Agamy, E., & El-Sebae, A. R. (2010). Chlorpyrifos induced reproductive toxicity in male mice. Reproductive Toxicology, 29, 80–85.

    Article  CAS  Google Scholar 

  • Foti, R., Ramierz, J. A., & Brown, T. C. (2011). Vulnerability of U.S. Water Supply to Shortage Draft General Technical Report. Fort Collins, CO.

    Google Scholar 

  • Galyean, M. L., Ponce, C., & Schutz, J. (2011). The future of beef production in North America. Animal Frontiers, 1(2), 29–36. doi:10.2527/af.2011-0013

    Article  Google Scholar 

  • Haas, H. J., Evans, C. E., & Miles, E. F. (1957). Nitrogen and carbon changes in the Great Plains soils as influenced by cropping and soil treatments. Tech. Bull. No. 1164. Tech. Bull. No. Washington, DC.

    Google Scholar 

  • Hartman, J. C., Nippert, J. B., Orozco, R. A., & Springer, C. J. (2011). Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the Central Great Plains, USA. Biomass and Bioenergy, 35, 3415–3421.

    Article  Google Scholar 

  • Hristov, A. N. (2012). Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. Journal of Animal Science, In Press. doi:10.2527/jas.2011-4539

    Google Scholar 

  • International Board for Soil Research and Management. (1990). Organic-matter management and tillage in humid and sub-humid Africa. In IBSRAM Proceedings No. 10. Bangkok, Thailand.

    Google Scholar 

  • Kenny, J. F., Barber, N. L., Hutson, S. S., Linsey, K. S., Lovelace, J. K., & Maupin, M. A. (2009). Estimated Use of Water in the United States in 2005: U.S. Geological Survey Circular 1344 (p. 52).

    Google Scholar 

  • Lal, R. (1979). Importance of tillage systems in soil and water management in the tropics. In: Soil Tillage and Crop Production. In R. Lal (Ed.), IITA Proc. Ser. 2 (pp. 25–32).

    Google Scholar 

  • Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Society, Proceedings of the Royal, B(276), 2333–2343.

    Google Scholar 

  • McBride, W. D., & Matthews, K. (2011). The diverse structure and organization of U.S. beef cow-calf farms. EIB No. 73. Washington, DC. Retrieved from http://www.ers.usda.gov/publications/eib73/

    Google Scholar 

  • Morgan, J. A., Mosier, A. R., Milchunas, D. G., Lecain, D. R., Nelson, J. A., & Parton, W. J. (2004). CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecological Applications, 14, 208–219.

    Article  Google Scholar 

  • National Renewable Energy Laboratory. (2012a). Dynamic Maps, GIS Data, & Analysis Tools: Geothermal Maps.

    Google Scholar 

  • National Renewable Energy Laboratory. (2012b). Dynamic Maps, GIS Data, & Analysis Tools: Solar Maps.

    Google Scholar 

  • National Renewable Energy Laboratory. (2012c). Dynamic Maps, GIS Data, & Analysis Tools: Wind Maps.

    Google Scholar 

  • Ojima, D., Garcia, L., Elgaali, E., Miller, K., Kittel, T. G. F., & Lackett, J. (1999). Potential Climate Change Impacts on Water Resources in the Great Plains. Journal Of The American Water Resources Association, 35(6), 1443–1454. doi:10.1111/j.1752-1688.1999.tb04228.x

    Article  Google Scholar 

  • Ojima, D. S., & Lackett, J. M. (2002). Preparing for a changing climate: The Potential Consequences of Climate Variability and Change. Change.

    Google Scholar 

  • Parton, W. J., Myron, P., & Ojima, D. (2007). Long-term Trends in Population, Farm Income, and Crop Production in the Great Plains. BioScience, 57(9), 737–747.

    Article  Google Scholar 

  • Peterson, G. A., & Westfall, D. G. (2004). Managing precipitation use in sustainable dryland agroecosystems. Annals of Applied Biology, 144(2), 127–138.

    Article  Google Scholar 

  • Pew Center on Global Climate Change. (2012). Renewable & Alternative Energy Portfolio Standards.

    Google Scholar 

  • Phillips, W. a., Horn, G. W., & Cole, N. a. (2011). The Relevancy of Forage Quality to Beef Production. Crop Science, 51(2), 410. doi:10.2135/cropsci2010.06.0382

    Article  Google Scholar 

  • Potter, K. N., Jones, O. R., Torbert, H. A., & Unger, P. W. (1997). Crop rotation and tillage effects on organic carbon sequestration in the semiarid southern Great Plains. Soil Science, 162(2), 140–147.

    Article  CAS  Google Scholar 

  • Rabalais, N. N., Turner, R. E., & Wiseman, W. J. (2002). Gulf of Mexico Hypoxia, a.K.a. “the Dead Zone.” Annual Review of Ecology and Systematics, 33(1), 235–263. doi:10.1146/annurev.ecolsys.33.010802.150513

    Article  Google Scholar 

  • Reynolds, C., Crompton, L., & Mills, J. (2010). Livestock and climate change impacts in the developing world. Outlook on Agriculture, 39(4), 245–248.

    Article  Google Scholar 

  • Ribaudo, M., Delgado, J., Hansen, L., Livingston, M., Mosheim, R., & J., W. (2011). Nitrogen In Agricultural Systems: Implications For Conservation Policy. ERR-127 (p. September).

    Google Scholar 

  • Roberts, B. (2011). Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado: Technical Report NREL/TP-6A20-51330 (p. 18). Golden, CO.

    Book  Google Scholar 

  • Sainju, U. M., Lenssen, A., Caesar-Thonthat, T., & Waddell, J. (2006). Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation. Journal of Environmental Quality, 35(4), 141–1347.

    Google Scholar 

  • Sainju, U. M., Lenssen, A. W., Caesar-TonThat, T., Jabro, J. D., Lartey, R. T., Evans, R. G., & Allen, B. L. (2011). Dryland residue and soil organic matter as influenced by tillage, crop rotation, and cultural practice. Plant and Soil, 338(1), 27–41.

    Article  CAS  Google Scholar 

  • Science Team about Energy and Prairie Pothole Environments. (2011). Brine Contamination to Prairie Potholes from Energy Development in the Williston Basin. Retrieved from http://steppe.cr.usgs.gov

  • Tieszen, L. L., Reed, B. C., Bliss, N. B., Wylie, B. K., & DeJong, D. D. (1997). NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecological Applications, 7(1), 59–78.

    Google Scholar 

  • Turka, R. J., & Gray, R. E. (2005). Impacts of coal mining. Reviews in Engineering Geology, 16, 79–86.

    Google Scholar 

  • U.S. Department of Energy. (2009). 2009 Energy Consumption Per Person. Retrieved January 03, 2012, from http://energy.gov/maps/2009-energy-consumption-person

  • USDA. (2011). Agriculture and Forestry Greenhouse Gas Inventory: 1990–2008. Technical Bulletin 1930. Retrieved from www.usda.gov/oce/climate_change/AFGGInventory1990_2008.htm

    Google Scholar 

  • USDA National Agricultural Statistics Service. (2009). Agricultural Statistics. NASS Home Page. Retrieved January 03, 2012, from http://www.nass.usda.gov/

    Google Scholar 

  • Vasconcelos, J. T., & Galyean, M. L. (2007). Nutritional recommendations of feedlot consulting nutritionists: the 2007 Texas Tech University survey. Journal of Animal Science, 85(10), 2772–81. doi:10.2527/jas.2007-0261

    Article  CAS  Google Scholar 

  • Wand, S. J. E., Midgley, G. F., Jones, M. H., & Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a test of current theories and perceptions. Global Change Biology, 5, 723–741.

    Article  Google Scholar 

  • Westfall, D. G., Peterson, G. A., & Hansen, N. C. (2010). Conserving and optimizing limited water for crop production. Journal of Crop Improvement, 24(1), 70–84.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Dennis S. Ojima et al.

About this chapter

Cite this chapter

Ojima, D.S. (2015). Characteristics of Agricultural System and Energy Resources. In: Ojima, D.S. (eds) Great Plains Regional Technical Input Report. NCA Regional Input Reports. Island Press, Washington, DC. https://doi.org/10.5822/978-1-61091-510-6_2

Download citation

Publish with us

Policies and ethics