Skip to main content

Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method

  • Protocol
  • First Online:
Population Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1589))

Abstract

The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  2. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  CAS  PubMed  Google Scholar 

  4. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  CAS  PubMed  Google Scholar 

  5. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure J, Fields S, Blau CA, Noble WS (2010) A three-dimensional model of the yeast genome. Nature 465:363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148:458–472

    Article  CAS  PubMed  Google Scholar 

  7. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hagège H, Klous P, Braem C, Splinter E, Dekker J, Cathala G, de Laat W, Forné T (2007) Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat Protoc 2:1722–1733

    Article  PubMed  Google Scholar 

  10. Court F, Miro J, Braem C, Lelay-Taha M-N, Brisebarre A, Atger F, Gostan T, Weber M, Cathala G, Forné T (2011) Modulated contact frequencies at gene-rich loci support a statistical helix model for mammalian chromatin organization. Genome Biol 12:R42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Court F, Baniol M, Hagège H, Petit JS, Lelay-Taha M-N, Carbonell F, Weber M, Cathala G, Forné T (2011) Long-range chromatin interactions at the mouse Igf2/H19 locus reveal a novel paternally expressed long non-coding RNA. Nucleic Acids Res 39:5893–5906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Braem C, Recolin B, Rancourt RC, Angiolini C, Barthes P, Branchu P, Court F, Cathala G, Ferguson-Smith AC, Forné T (2008) Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus. J Biol Chem 283:18612–18620

    Article  CAS  PubMed  Google Scholar 

  13. Lutfalla G, Uzé G (2006) Performing quantitative reverse-transcribed polymerase chain reaction experiments. Methods Enzymol 410:386–400

    Article  CAS  PubMed  Google Scholar 

  14. Milligan L, Antoine E, Bisbal C, Weber M, Brunel C, Forné T, Cathala G (2000) H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell differentiation. Oncogene 19:5810–5816

    Article  CAS  PubMed  Google Scholar 

  15. Milligan L, Forné T, Antoine E, Weber M, Hemonnot B, Dandolo L, Brunel C, Cathala G (2002) Turnover of primary transcripts is a major step in the regulation of mouse H19 gene expression. EMBO Rep 3:774–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weber M, Hagège H, Lutfalla G, Dandolo L, Brunel C, Cathala G, Forné T (2003) A real-time polymerase chain reaction assay for quantification of allele ratios and correction of amplification bias. Anal Biochem 320:252–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Institut National du Cancer [contract N° INCa_5960, PLBIO 2012-129, to T.F.], the Association pour la Recherche contre le Cancer [ARC contract n°SFI20101201555 to T.F.], the Ligue contre le cancer (comité Hérault), and the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Forné .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ea, V., Court, F., Forné, T. (2015). Quantitative Analysis of Intra-chromosomal Contacts: The 3C-qPCR Method. In: Haggarty, P., Harrison, K. (eds) Population Epigenetics. Methods in Molecular Biology, vol 1589. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_269

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_269

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6901-2

  • Online ISBN: 978-1-4939-6903-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics