Skip to main content

Large-Scale Profiling of Cellular Metabolic Activities Using Deep 13C Labeling Medium

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

The recently developed deep labeling method allows for large-scale profiling of metabolic activities in human cells or tissues using isotope tracing with a highly 13C enriched culture medium in combination with liquid chromatography–high resolution mass spectrometry. This method generates mass spectrometry data sets where endogenous cellular products can be identified, and active pathways can be determined from observed 13C mass isotopomers of the various metabolites measured. Here we describe in detail the experimental procedures for deep labeling experiments in cultured mammalian cells, including synthesis of the deep labeling medium, experimental considerations for cell culture, metabolite extractions and sample preparation, and liquid chromatography–mass spectrometry. We also outline a workflow for the downstream data analysis using publicly available software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  CAS  Google Scholar 

  2. Freitag J, Berod L, Kamradt T, Sparwasser T (2016) Immunometabolism and autoimmunity. Immunol Cell Biol 94:925–934

    Article  CAS  Google Scholar 

  3. Viant MR, Kurland IJ, Jones MR, Dunn WB (2017) How close are we to complete annotation of metabolomes? Curr Opin Chem Biol 36:64–69

    Article  CAS  Google Scholar 

  4. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL et al (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    Article  CAS  Google Scholar 

  5. Shlomi T, Cabili MN, Herrgard MJ, Palsson BØ, Ruppin E (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26:1003–1010

    Article  CAS  Google Scholar 

  6. Agren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518

    Article  CAS  Google Scholar 

  7. Grankvist N, Watrous JD, Lehmann KA, Lyutvinskiy Y, Jain M, Nilsson R et al (2018) Profiling the metabolism of human cells by deep 13C labeling. Cell Chem Biol 25:1419–1427

    Article  CAS  Google Scholar 

  8. Moore GE, Gerner RE, Franklin H (1967) Culture of normal human leukocytes. JAMA 199:519–524

    Article  CAS  Google Scholar 

  9. Lyutvinskiy Y, Watrous JD, Jain M, Nilsson R (2017) A web service framework for interactive analysis of metabolomics data. Anal Chem 89:5713–5718

    Article  CAS  Google Scholar 

  10. Wein J, Goetz IE (1973) Asparaginase and glutaminase activities in culture media containing dialyzed fetal calf serum. In Vitro 9:186–193

    Article  CAS  Google Scholar 

  11. Katunuma N, Huzino A, Tomino I (1967) Organ specific control of glutamine metabolism. Adv Enzym Regul 5:55–58

    Article  CAS  Google Scholar 

  12. Kihara H, de la Flor SD (1968) Arginase in fetal calf serum. Exp Biol Med 129:303–304

    Article  CAS  Google Scholar 

  13. Jain M, Ngoy S, SA S, RA S, Rhee EP, Liao R et al (2014) A systematic survey of lipids across mouse tissues. Am J Physiol Endocrinol Metab 306:E854–E868

    Article  CAS  Google Scholar 

  14. C a S, Want EJ, O’Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    Article  Google Scholar 

  15. Pluskal T, Castillo S, Villar-briones A, Oresic M (2010) MZmine 2 : modular framework for processing , visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Swedish Foundation for Strategic Research (FFL12-0220.006) and Karolinska Institutet to R.N., the National Institutes of Health (NIH) 1R01ES027595 and 1S10OD020025 to M.J., and NIH K01DK116917 to J.D.W.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grankvist, N., Watrous, J.D., Jain, M., Nilsson, R. (2020). Large-Scale Profiling of Cellular Metabolic Activities Using Deep 13C Labeling Medium. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics