Skip to main content

Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition “Click” Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus

  • Protocol
  • First Online:
Peptide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2103))

Abstract

Fmoc solid-phase peptide synthesis (SPPS) is the most common approach used to synthesize natural and unnatural peptides. However, the synthesis of sequences longer than 30–60 amino acids is associated with a drastic reduction in peptide quality. Thus, large and complex peptides are normally synthesized as fragments, which are then conjugated together. Here, we describe the synthesis of a large, branched peptide, a multi-epitope vaccine candidate against Group A Streptococcus, with the help of microwave-assisted Fmoc-SPPS, thiol-maleimide conjugation, and copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7(2):842–854. https://doi.org/10.1039/c5sc03892h

    Article  CAS  PubMed  Google Scholar 

  2. Massell BF (1969) Rheumatic fever following streptococcal vaccination. JAMA 207(6). https://doi.org/10.1001/jama.1969.03150190037007

    Article  CAS  Google Scholar 

  3. Marijon E, Mirabel M, Celermajer DS, Jouven X (2012) Rheumatic heart disease. Lancet 379(9819):953–964. https://doi.org/10.1016/s0140-6736(11)61171-9

    Article  PubMed  Google Scholar 

  4. Rajčáni J, Szathmary S (2018) Peptide vaccines: new trends for avoiding the autoimmune response. Open Infect Dis J 10(1):47–62. https://doi.org/10.2174/1874279301810010047

    Article  Google Scholar 

  5. Li W, Joshi MD, Singhania S, Ramsey KH, Murthy AK (2014) Peptide vaccine: progress and challenges. Vaccines (Basel) 2(3):515–536. https://doi.org/10.3390/vaccines2030515

    Article  CAS  Google Scholar 

  6. Skwarczynski M, Toth I (2011) Lipid-core-peptide system for self-adjuvanting synthetic vaccine delivery. Methods Mol Biol 751:297–308. https://doi.org/10.1007/978-1-61779-151-2_18

    Article  CAS  PubMed  Google Scholar 

  7. Zhong W, Skwarczynski M, Toth I (2009) Lipid core peptide system for gene, drug, and vaccine delivery. Aust J Chem 62(9):956–967. https://doi.org/10.1071/ch09149

    Article  CAS  Google Scholar 

  8. Moyle PM, Toth I (2013) Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 8(3):360–376. https://doi.org/10.1002/cmdc.201200487

    Article  CAS  PubMed  Google Scholar 

  9. Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A, Grey HM (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1(9):751–761. https://doi.org/10.1016/s1074-7613(94)80017-0

    Article  CAS  PubMed  Google Scholar 

  10. Erskine CL, Krco CJ, Hedin KE, Borson ND, Kalli KR, Behrens MD, Heman-Ackah SM, von Hofe E, Wettstein PJ, Mohamadzadeh M, Knutson KL (2011) MHC class II epitope nesting modulates dendritic cell function and improves generation of antigen-specific CD4 helper T cells. J Immunol 187(1):316–324. https://doi.org/10.4049/jimmunol.1100658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moyle PM, Hartas J, Henningham A, Batzloff MR, Good MF, Toth I (2013) An efficient, chemically-defined semisynthetic lipid-adjuvanted nanoparticulate vaccine development system. Nanomedicine 9(7):935–944. https://doi.org/10.1016/j.nano.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  12. Ahmad Fuaad AA, Skwarczynski M, Toth I (2016) The use of microwave-assisted solid-phase peptide synthesis and click chemistry for the synthesis of vaccine candidates against hookworm infection. Methods Mol Biol 1403:639–653. https://doi.org/10.1007/978-1-4939-3387-7_36

    Article  Google Scholar 

  13. Celebioglu A, Uyar T (2011) Electrospun porous cellulose acetate fibers from volatile solvent mixture. Mater Lett 65(14):2291–2294. https://doi.org/10.1016/j.matlet.2011.04.039

    Article  CAS  Google Scholar 

  14. Dyke JM, Groves AP, Morris A, Ogden JS, Dias AA, Oliveira AMS, Costa ML, Barros MT, Cabral MH, Moutinho AMC (1997) Study of the thermal decomposition of 2-azidoacetic acid by photoelectron and matrix isolation infrared spectroscopy. J Am Chem Soc 119(29):6883–6887. https://doi.org/10.1021/ja964354v

    Article  CAS  Google Scholar 

  15. Bretherick L (1990) Specific chemicals. In: Bretherick L (ed) Bretherick’s handbook of reactive chemical hazards. Butterworth-Heinemann, Oxford, pp 1–1475. https://doi.org/10.1016/b978-0-7506-0706-3.50009-2

    Chapter  Google Scholar 

  16. Wehrstedt KD, Wandrey PA, Heitkamp D (2005) Explosive properties of 1-hydroxybenzotriazoles. J Hazard Mater 126(1–3):1–7. https://doi.org/10.1016/j.jhazmat.2005.05.044

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dai, C., Stephenson, R.J., Skwarczynski, M., Toth, I. (2020). Application of Fmoc-SPPS, Thiol-Maleimide Conjugation, and Copper(I)-Catalyzed Alkyne-Azide Cycloaddition “Click” Reaction in the Synthesis of a Complex Peptide-Based Vaccine Candidate Against Group A Streptococcus. In: Hussein, W., Skwarczynski, M., Toth, I. (eds) Peptide Synthesis. Methods in Molecular Biology, vol 2103. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0227-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0227-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0226-3

  • Online ISBN: 978-1-0716-0227-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics