Skip to main content

Automated Solid-Phase Peptide Synthesis

  • Protocol
  • First Online:
Peptide Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2103))

Abstract

The development of solid-phase peptide synthesis by Bruce Merrifield paved the way for a synthesis carried out by machines. Automated peptide synthesis is a fast and convenient way of synthesizing many peptides simultaneously. This chapter tries to give a general guidance for the development of synthesis protocols for the peptide synthesizer. It also provides some suggestions for the modification of the synthesized peptides. Additionally, many examples of possible challenges during and after the synthesis are given in order to support the reader in finding the best synthesis strategy. Numerous references are given to many of the described matters.

http://www.kinexus.ca/ourServices/proteinAndPeptide/index.html

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtius T (1881) Über die Einwirkung von Chlorbenzyl auf Glycocollsilber. J Prakt Chem 24:239–240

    Google Scholar 

  2. Fischer E (1903) Synthese von Derivaten der Polypeptide. Ber Dtsch Chem Ges 36:2094–2106

    Article  CAS  Google Scholar 

  3. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75:4879–4880. https://doi.org/10.1021/ja01115a553

    Article  Google Scholar 

  4. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154. https://doi.org/10.1021/ja00897a025

    Article  CAS  Google Scholar 

  5. Schneider J, Kent SHB (1988) Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 54:363–368. https://doi.org/10.1016/0092-8674(88)90199-7

    Article  CAS  PubMed  Google Scholar 

  6. Carpino LA, Han GY (1970) The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92:5748–5749. https://doi.org/10.1021/ja00722a043

    Article  CAS  Google Scholar 

  7. Merrifield RB, Stewart JM, Jernberg N (1966) Instrument for automated synthesis of peptides. Anal Chem 38(13):1905–1914. https://doi.org/10.1021/ac50155a057

    Article  CAS  PubMed  Google Scholar 

  8. Bianco A, da Ros T, Prato M, Toniolo C (2001) Fullerene-based amino acids and peptides. J Peptide Sci 7:208–219. https://doi.org/10.1002/psc.313

    Article  CAS  Google Scholar 

  9. Hoffmann B, Ast T, Polakowski T, Reineke U, Volkmer R (2006) Transformation of a biologically active peptide into peptoid analogs while retaining biological activity. Protein Pept Lett 13:829–833. https://doi.org/10.2174/092986606777841299

    Article  CAS  Google Scholar 

  10. Velasco S, Canepa B (2005) A general overview of features and applications of PNAs (peptide nucleic acids). Suppl Chim Oggi Chem Today 23(3):14–19

    Google Scholar 

  11. Abdel Rahman S, El-Kafrawy A, Hattaba A, Anwer MF (2007) Optimization of solid-phase synthesis of difficult peptide sequences via comparison between different improved approaches. Amino Acids 33:531–536. https://doi.org/10.1007/s00726-006-0387-x

    Article  CAS  PubMed  Google Scholar 

  12. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256. https://doi.org/10.1038/nprot.2007.454

    Article  CAS  PubMed  Google Scholar 

  13. Cerovsky V, Scheraga HA (2005) Combined solid-phase/solution synthesis of large ribonuclease A C-terminal peptides containing a non-natural proline analog. J Peptide Res 65:518–528. https://doi.org/10.1111/j.1399-3011.2005.00257.x

    Article  CAS  Google Scholar 

  14. Barlos B, Gatos D (1999) 9-Flurenylmethoxycarbonyl/tButyl-based convergent protein synthesis. Biopolymers 51:266–278. https://doi.org/10.1002/(SICI)1097-0282(1999)51:4<266::AID-BIP3>3.0.CO;2-U

    Article  CAS  PubMed  Google Scholar 

  15. Dawson E, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779. https://doi.org/10.1126/science.7973629

    Article  CAS  PubMed  Google Scholar 

  16. Kimmerlin T, Seebach D (2005) ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Peptide Res 65:229–260. https://doi.org/10.1111/j.1399-3011.2005.00214.x

    Article  CAS  Google Scholar 

  17. Jaradat DMM (2018) Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids 50:39–68. https://doi.org/10.1007/s00726-017-2516-0

    Article  CAS  PubMed  Google Scholar 

  18. Fields GB, Noble RL (1990) Solid phase synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x

    Article  Google Scholar 

  19. Rizzolo F, Testa C, Lambardi D, Chorev M, Chelli M, Roveroc P, Papini AM (2011) Conventional and microwave-assisted SPPS approach: a comparative synthesis of PTHrP(1-34)NH2. J Pept Sci 17:708–714. https://doi.org/10.1002/psc.1395

    Article  CAS  PubMed  Google Scholar 

  20. Bacsa B, Horváti K, Bõsze S, Andreae F, Kappe CO (2008) Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies. J Org Chem 73:7532–7542. https://doi.org/10.1021/jo8013897

    Article  CAS  PubMed  Google Scholar 

  21. Pedersen SL, Jensen KJ (2013) Instruments for automated peptide synthesis. In: Jensen KJ, Shelton PT, Pedersen SL (eds) Peptide synthesis and applications. Methods in molecular biology, vol 1047. Springer, New York, NY, pp 215–224. https://doi.org/10.1007/978-1-62703-544-6_15

    Google Scholar 

  22. Ede NJ (2002) Multiple parallel synthesis of peptides on SynPhase™ grafted supports. J Immunol Methods 267:3–11. https://doi.org/10.1016/S0022-1759(02)00136-9

    Article  CAS  PubMed  Google Scholar 

  23. Xiang B, Lam KS, Sun G (2009) Functional fibrous polypropylene solid support and its application in solid phase peptide synthesis and cell specific binding. React Funct Polymers 69:905–914. https://doi.org/10.1016/j.reactfunctpolym.2009.09.007

    Article  CAS  Google Scholar 

  24. Rink H (1987) Solid phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett 28:3787–3790. https://doi.org/10.1016/S0040-4039(00)96384-6

    Article  CAS  Google Scholar 

  25. Wang S-S (1973) p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95(4):1328–1333. https://doi.org/10.1021/ja00785a602

    Article  CAS  PubMed  Google Scholar 

  26. Barlos K, Chatzi O, Gatos D, Stavropoulos G (1991) 2-Chlorotrityl chloride resin; Studies on anchoring of Fmoc-amino acids and peptide cleavage. Int J Pept Protein Res 37:513–520. https://doi.org/10.1111/j.1399-3011.1991.tb00769.x

    Article  Google Scholar 

  27. Hansen J, Diness F, Meldal M (2016) C-Terminally modified peptides via cleavage of the HMBA linker by O-, N- or S-nucleophiles. Org Biomol Chem 14:3238–3245. https://doi.org/10.1039/C6OB00213G

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen SL, Jensen KJ (2013) Peptide release, side-chain deprotection, work-up, and isolation. In: Jensen KJ, Shelton PT, Pedersen SL (eds) Peptide synthesis and applications. Methods in molecular biology, vol 1047. Springer, New York, pp 43–63. https://doi.org/10.1007/978-1-62703-544-6_3

    Google Scholar 

  29. Sieber P (1987) A new acid-labile anchor group for the solid- phase synthesis of C-terminal peptide amides by the Fmoc method. Tetrahedron Lett 28(19):2107–2110. https://doi.org/10.1016/S0040-4039(00)96055-6

    Article  CAS  Google Scholar 

  30. Han Y, Bontems SL, Hegyes P, Munson MC, Minor CA et al (1996) Preparation and applications of xanthenylamide (XAL) handles for solid-phase synthesis of C-terminal peptide amides under particularly mild conditions. Org Chem 61:6326–6339. https://doi.org/10.1021/jo960312d

    Article  CAS  Google Scholar 

  31. Sherrington DC (1998) Preparation, structure and morphology of polymer supports. Chem Commun 1998:2275–2286. https://doi.org/10.1039/A803757D

    Article  Google Scholar 

  32. Kates SA, McGuinness BF, Blackburn C, Griffin GW, Solé NA, Barany G, Albericio F (1998) “High-load” polyethylene glycol-polystyrene (PEG-PS) graft supports for solid-phase synthesis. Biopolymers (Pept Sci) 47:365–380. https://doi.org/10.1002/(SICI)1097-0282(1998)47:5<365::AID-BIP4>3.0.CO;2-8

    Article  CAS  Google Scholar 

  33. Quarrell R, Claridge TDW, Weaver GW, Lowe G (1995) Structure and properties of TentaGel resin beads: implications for combinatorial library chemistry. Mol Divers 1:223–232. https://doi.org/10.1007/BF01715526

    Article  Google Scholar 

  34. Kempe M, Barany G (1996) CLEAR: a novel family of highly cross-linked polymeric supports for solid-phase peptide synthesis. J Am Chem Soc 118:7083–7093. https://doi.org/10.1021/ja954196s

    Article  CAS  Google Scholar 

  35. de la Torre BG, Jakab A, Andreu D (2007) Polyethyleneglycol-based resins as solid supports for the synthesis of difficult or long peptides. Int J Pept Res Ther 13(1–2):265–270. https://doi.org/10.1007/s10989-006-9077-5

    Article  CAS  Google Scholar 

  36. Carpino LA, El-Faham A (1999) The diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole system: segment coupling and stepwise peptide assembly. Tetrahedron 55(22):6813–6830. https://doi.org/10.1016/S0040-4020(99)00344-0

    Article  CAS  Google Scholar 

  37. Green J, Bradley K (1993) Studies on the acylation of hydroxy-functionalized resins using Fmoc amino acids activated using diisopropylcarbodiimide/HOBt or as acid fluorides. Tetrahedron 49(20):4141–4146. https://doi.org/10.1016/S0040-4020(01)85732-X

    Article  CAS  Google Scholar 

  38. Sheehan JC, Hess GP (1955) A new method of forming peptide bonds. J Am Chem Soc 77(4):1067–1068. https://doi.org/10.1021/ja01609a099

    Article  CAS  Google Scholar 

  39. Atherton E, Sheppard RC (1989) Activated esters of Fmoc-amino acids. In: Solid phase peptide synthesis – a practical approach. IRL Press at Oxford University Press, Oxford, pp 76–78

    Google Scholar 

  40. Ye Y-H, Li H, Jiang X (2005) DEPBT as an efficient coupling reagent for amide bond formation with remarkable resistance to racemization. Biopolymers 80:172–178. https://doi.org/10.1002/bip.20201

    Article  CAS  PubMed  Google Scholar 

  41. Goodman M, Zapf C, Rew Y (2001) New reagents, reactions, and peptidomimetics for drug design. Biopolymers (Pept Sci) 60:229–245. https://doi.org/10.1002/1097-0282(2001)60:3<229::AID-BIP10034>3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  42. Subirós-Funosas R, Nieto-Rodriguez L, Jensen KJ, Albericio F (2013) COMU: scope and limitations of the latest innovation in peptide acyl transfer reagents. J Pept Sci 19:408–414. https://doi.org/10.1002/psc.2517

    Article  CAS  PubMed  Google Scholar 

  43. Achyuthana KE, Wheeler DR (2015) Easy parallel screening of reagent stability, quality control, and metrology in solid phase peptide synthesis (SPPS) and peptide couplings for microarrays. J Pept Sci 21:751–757. https://doi.org/10.1002/psc.2806

    Article  CAS  Google Scholar 

  44. Chantell CA, Onaiyekan MA, Menakuru M (2012) Fast conventional Fmoc solid-phase peptide synthesis: a comparative study of different activators. J Pept Sci 18:88–91. https://doi.org/10.1002/psc.1419

    Article  CAS  PubMed  Google Scholar 

  45. Hermanson GT (2013) Zero-length crosslinkers. In: Bioconjugate techniques, 3rd edn. Elsevier, New York, NY, pp 259–273. https://doi.org/10.1016/B978-0-12-382239-0.00034-0

    Chapter  Google Scholar 

  46. Nozaki S (1999) Effects of amounts of additives on peptide coupling mediated by a water-soluble carbodiimide in alcohols. J Peptide Res 54:162–167. https://doi.org/10.1034/j.1399-3011.1999.00101.x

    Article  CAS  Google Scholar 

  47. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115(10):4397–4398. https://doi.org/10.1021/ja00063a082

    Article  CAS  Google Scholar 

  48. Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C et al (2002) The uronium/guanidinium peptide coupling reagents: finally the true uronium salts. Angew Chem Int Ed 41(3):441–445. https://doi.org/10.1002/1521-3773(20020201)41:3<441::AID-ANIE441>3.0.CO;2-N

    Article  CAS  Google Scholar 

  49. Knorr R, Trzeciak A, Bannwarth W, Gillessen D (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett 30(15):1927–1930. https://doi.org/10.1016/S0040-4039(00)99616-3

    Article  CAS  Google Scholar 

  50. Marder O, Shvo Y, Albericio F (2002) HCTU and TCTU: new coupling reagents: development and industrial aspects. Chim Oggi 20(7–8):37–41. https://doi.org/10.1002/chin.200332258

  51. Hood CA, Fuentes G, Patel H, Page K, Menakuru M, Park JH (2008) Fast conventional Fmoc solid-phase peptide synthesis with HCTU. J Pept Sci 14:97–101. https://doi.org/10.1002/psc.921

    Article  CAS  PubMed  Google Scholar 

  52. König W, Geiger R (1970) Eine neue methode zur synthese von peptiden: aktivierung der carboxylgruppe mit dicyclohexylcarbodiimid unter zuatz von 1-hydroxy-benzotriazolen (a new method for synthesis of peptides: activation of the carboxyl group with dicyclohexylcarbodiimide using 1-hydroxybenzotriazoles as additives). Chem Ber 103(3):788–798. https://doi.org/10.1002/cber.19701030319

    Article  PubMed  Google Scholar 

  53. Barré A, Ţînţaş M-L, Levacher V, Papamicaël C, Gembus V (2017) An overview of the synthesis of highly versatile N-hydroxysuccinimide. Synthesis 49:472–483. https://doi.org/10.1055/s-0036-1588607

    Article  CAS  Google Scholar 

  54. Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15:9394–9403. https://doi.org/10.1002/chem.200900614

    Article  CAS  PubMed  Google Scholar 

  55. Subirós-Funosas R, El-Faham A, Albericio F (2012) Use of Oxyma as pH modulatory agent to be used in the prevention of base-driven side reactions and its effect on 2-chlorotrityl chloride resin. Biopolymers (Pept Sci) 98(2):89–97. https://doi.org/10.1002/bip.21713

    Article  CAS  Google Scholar 

  56. Blankemeyer-Menge B, Nimtz M, Frank R (1990) An efficient method for anchoring Fmoc-amino acids to hydroxyl-functionalised solid supports. Tetrahedron Lett 31(12):1701–1704. https://doi.org/10.1016/S0040-4039(00)88858-9

    Article  CAS  Google Scholar 

  57. Coste J, Le-Nguyen D, Castro B (1990) PyBOP®: a new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett 31(2):205–208. https://doi.org/10.1016/S0040-4039(00)94371-5

    Article  CAS  Google Scholar 

  58. Carpino LA, El-Faham A (1995) Tetrafluoroformamidinium hexafluorophosphate: a rapid-acting peptide coupling reagent for solution and solid phase peptide synthesis. J Am Chem Soc 117:5401–5402. https://doi.org/10.1021/ja00124a040

    Article  CAS  Google Scholar 

  59. Wenschuh H, Beyermann M, Winter R, Bienert M, Ionescu D, Carpino LA (1996) Fmoc-amino acid fluorides in peptide synthesis – extension of the method to extremely hindered amino acids. Tetrahedron Lett 37(31):5483–5486. https://doi.org/10.1016/0040-4039(96)01160-4

    Article  CAS  Google Scholar 

  60. Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron Lett 60:2447–2467. https://doi.org/10.1016/j.tet.2004.01.020

    Article  CAS  Google Scholar 

  61. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852. https://doi.org/10.1016/j.tet.2005.08.031

    Article  CAS  Google Scholar 

  62. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631. https://doi.org/10.1039/b701677h

    Article  CAS  PubMed  Google Scholar 

  63. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602. https://doi.org/10.1021/cr100048w

    Article  CAS  PubMed  Google Scholar 

  64. Al-Warhi TI, Al-Hazimi HMA, El-Faham A (2012) Recent development in peptide coupling reagents. J Saudi Chem Soc 16:97–116. https://doi.org/10.1016/j.jscs.2010.12.006

    Article  CAS  Google Scholar 

  65. Albericio F, El-Faham A (2018) Choosing the right coupling reagent for peptides: a twenty-five-year journey. Org Process Res Dev 22:760–772. https://doi.org/10.1021/acs.oprd.8b00159

    Article  CAS  Google Scholar 

  66. Hachmann J, Lebl M (2006) Alternative to piperidine in Fmoc solid-phase synthesis. J Comb Chem 8:149. https://doi.org/10.1021/cc050123l

    Article  CAS  PubMed  Google Scholar 

  67. Ralhan K, KrishnaKumar VG, Gupta S (2015) Piperazine and DBU: a safer alternative for rapid and efficient Fmoc deprotection in solid phase peptide synthesis. RSC Adv 5:104417–104425. https://doi.org/10.1039/c5ra23441g

    Article  CAS  Google Scholar 

  68. Luna OF, Gomez J, Cárdenas C, Albericio F, Marshall SH, Guzmán F (2016) Deprotection reagents in Fmoc solid phase peptide synthesis: moving away from piperidine? Molecules 21(11):pii:E1542. https://doi.org/10.3390/molecules21111542

    Article  CAS  Google Scholar 

  69. Shelton PT, Jensen KJ (2013) Linkers, resins, and general procedures for solid-phase peptide synthesis. In: Jensen KJ, Shelton PT, Pedersen SL (eds) Peptide synthesis and applications. Methods in molecular biology, vol 1047. Springer, New York, pp 23–41. https://doi.org/10.1007/978-1-62703-544-6_2

    Google Scholar 

  70. Patel H, Chantell CA, Fuentes G, Menakuru M, Park JH (2008) Resin comparison and fast automated stepwise conventional synthesis of human SDF-1α. J Pept Sci 14:1240–1243. https://doi.org/10.1002/psc.1056

    Article  CAS  PubMed  Google Scholar 

  71. Guillier F, Orian D, Bradley M (2000) Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry. Chem Rev 100:2091–2157. https://doi.org/10.1021/cr000014n

    Article  CAS  PubMed  Google Scholar 

  72. Azmi S, Jiang K, Stiles M, Thundat T, Kaur K (2015) Detection of Listeria monocytogenes with short peptide fragments. ACS Comb Sci 17:156–163. https://doi.org/10.1021/co500079k

    Article  CAS  PubMed  Google Scholar 

  73. Eissler S, Kley M, Bächle D, Loidl G, Meier T, Samson D (2017) Substitution determination of Fmoc-substituted resins at different wavelengths. J Pept Sci 23:757–762. https://doi.org/10.1002/psc.3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. García-Martín F, Quintanar-Audelo M, García-Ramos Y, Cruz LJ, Gravel C, Furic R et al (2006) ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J Comb Chem 8:213–220. https://doi.org/10.1021/cc0600019

    Article  PubMed  CAS  Google Scholar 

  75. Carpino LA, Ionescu D, El-Faham A, Henklein P, Wenschuh H, Bienert M, Beyermann (1998) Protected amino acid chlorides vs protected amino acid fluorides: reactivity comparisons. Tetrahedron Lett 39:241–244. https://doi.org/10.1016/S0040-4039(97)10504-4

    Article  CAS  Google Scholar 

  76. Edman P (1950) Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293. https://doi.org/10.3891/acta.chem.scand.04-0283

    Article  CAS  Google Scholar 

  77. Jad YE, Khattab SN, de la Torre BG, Govender T, Kruger HG, El-Faham A, Albericio F (2014) TOMBU and COMBU as novel uronium-type peptide coupling reagents derived from Oxyma-B. Molecules 19(11):18953–18965. https://doi.org/10.3390/molecules191118953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27. https://doi.org/10.1002/psc.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG (2018) Peptide chemistry toolbox – transforming natural peptides into peptide therapeutics. Bioorg Med Chem 26:2759–2765. https://doi.org/10.1016/j.bmc.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  80. Mäde V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. https://doi.org/10.3762/bjoc.10.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Postma TM, Albericio F (2014, 2014) Disulfide Formation strategies in peptide synthesis. Eur J Org Chem:3519–3530. https://doi.org/10.1002/ejoc.201402149

    Article  CAS  Google Scholar 

  82. Eichler J, Houghten RA (1997) Synthesis of cyclic disulfide peptides: comparison of oxidation methods. Protein Pept Lett 4(3):157–164

    CAS  Google Scholar 

  83. Tam JP, Wu C-R, Liu W, Zhang J-W (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J Am Chem Soc 113(17):6657–6662. https://doi.org/10.1021/ja00017a044

    Article  CAS  Google Scholar 

  84. Annis I, Chen L, Barany G (1998) Novel solid-phase reagents for facile formation of intramolecular disulfide bridges in peptides under mild conditions. J Am Chem Soc 120:7226–7238. https://doi.org/10.1021/ja981111p

    Article  CAS  Google Scholar 

  85. Veber DF, Milkowski JD, Varga SL, Denkewalter RG, Hirschmann R (1972) Acetamidomethyl. A novel thiol protecting group for cysteine. J Am Chem Soc 94(15):5456–5461. https://doi.org/10.1021/ja00770a600

    Article  CAS  PubMed  Google Scholar 

  86. Reddy KMB, Kumari YB, Mallikharjunasarma D, Bulliraju K, Sreelatha V, Ananda K (2012, 2012) Large scale solid phase synthesis of peptide drugs: use of commercial anion exchange resin as quenching agent for removal of iodine during disulphide bond formation. Int J Pept 323907. https://doi.org/10.1155/2012/323907

    Google Scholar 

  87. Mochizuki M, Tsuda S, Tanimura K, Nishiuchi Y (2015) Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org Lett 17:2202–2205. https://doi.org/10.1021/acs.orglett.5b00786

    Article  CAS  PubMed  Google Scholar 

  88. Cuthbertson A, Indrevoll B (2003) Regioselective formation, using orthogonal cysteine protection, of an α-conotoxin dimer peptide containing four disulfide bonds. Org Lett 5(16):2955–2957. https://doi.org/10.1021/ol035105w

    Article  CAS  PubMed  Google Scholar 

  89. Barlos K, Gatos D, Hatzi O, Koch N, Koutsogianni S (1996) Synthesis of the very acid-sensitive Fmoc-Cys(Mmt)-OH and its application in solid-phase peptide synthesis. Int J Pept Protein Res 47(3):148–153. https://doi.org/10.1111/j.1399-3011.1996.tb01338.x

    Article  CAS  PubMed  Google Scholar 

  90. Boisguerin P, Leben R, Ay B, Radziwill G, Moelling K, Dong L, Volkmer-Engert R (2004) An improved method for the synthesis of cellulose membrane-bound peptides with free C termini is useful for the PDZ domain binding studies. Chem Biol 11:449–459. https://doi.org/10.1016/j.chembiol.2004.03.010

    Article  CAS  PubMed  Google Scholar 

  91. Galande AK, Weissleder R, Tung C-H (2005) An effective method of on-resin disulfide bond formation in peptides. J Comb Chem 7:174–177. https://doi.org/10.1021/cc049839r

    Article  CAS  PubMed  Google Scholar 

  92. Postma TM, Giraud M, Albericio F (2012) Trimethoxyphenylthio as a highly labile replacement for tert-butylthio cysteine protection in Fmoc solid phase synthesis. Org Lett 14(21):5468–5471. https://doi.org/10.1021/ol3025499

    Article  CAS  PubMed  Google Scholar 

  93. McCurdy SN (1989) The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis. Pept Res 2(1):147–152

    CAS  PubMed  Google Scholar 

  94. Angell YM, Alsina J, Albericio F, Barany G (2002) Practical protocols for stepwise solid-phase synthesis of cysteine-containing peptides. J Peptide Res 60:292–299. https://doi.org/10.1034/j.1399-3011.2002.02838.x

    Article  CAS  Google Scholar 

  95. Kaiser T, Nicholson G, Kohlbau HJ, Voelter W (1996) Racemization studies of Fmoc-Cys(Trt)-OH during stepwise Fmoc-solid phase peptide synthesis. Tetrahedron Lett 37(8):1187–1190. https://doi.org/10.1016/0040-4039(95)02406-9

    Article  CAS  Google Scholar 

  96. Postma TM, Albericio F (2013) N-Chlorosuccinimide, an efficient reagent for on-resin disulfide formation in solid-phase peptide synthesis. Org Lett 15(3):616–619. https://doi.org/10.1021/ol303428d

    Article  CAS  PubMed  Google Scholar 

  97. Zhang S, Lin F, Hossain MA, Shabanpoor F, Tregear GW, Wade JD (2008) Simultaneous post-cysteine(S-Acm) group removal quenching of iodine and isolation of peptide by one step ether precipitation. Int J Pept Res Ther 14:301–305. https://doi.org/10.1007/s10989-008-9148-x

    Article  CAS  Google Scholar 

  98. Liu F, Zaykov AN, Levy JJ, DiMarchi RD, Mayer JP (2016) Chemical synthesis of peptides within the insulin superfamily. J Pept Sci 22:260–270. https://doi.org/10.1002/psc.2863

    Article  CAS  PubMed  Google Scholar 

  99. Kondasinghe TD, Saraha HY, Jackowski ST, Stockdill JL (2019) Raising the bar on-bead: efficient on-resin synthesis of a-conotoxin LvIA. Tetrahedron Lett 60:23–28. https://doi.org/10.1016/j.tetlet.2018.11.048

    Article  CAS  PubMed  Google Scholar 

  100. Davies JS (2003) The cyclization of peptides and depsipeptides. J Peptide Sci 9:471–501. https://doi.org/10.1002/psc.491

    Article  CAS  Google Scholar 

  101. Rosengren KJ, Göransson U, Otvos L Jr, Craik DJ (2004) Cyclization of pyrrhocoricin retains structural elements crucial for the antimicrobial activity of the native peptide. Biopolymers (Pept Sci) 76:446–458. https://doi.org/10.1002/bip.20159

    Article  CAS  PubMed  Google Scholar 

  102. Hahn M, Winkler D, Welfle K, Misselwitz R, Welfle H, Wessner H, Zahn G et al (2001) Cross-reactive binding of cyclic peptides to an anti-TGFa antibody Fab fragment. An X-ray structural and thermodynamic analysis. J Mol Biol 314:293–309. https://doi.org/10.1006/jmbi.2001.5135

    Article  CAS  PubMed  Google Scholar 

  103. Tugyi R, Mezö G, Fellinger E, Andreu D, Hudecz F (2005) The effect of cyclization on the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope peptide. J Peptide Sci 11:642–649. https://doi.org/10.1002/psc.669

    Article  CAS  Google Scholar 

  104. Grieco P, Gitu PM, Hruby VJ (2001) Preparation of ‘side-chain-to-side-chain’ cyclic peptides by Allyl and Alloc strategy: potential for library synthesis. J Peptide Res 57:250–256. https://doi.org/10.1111/j.1399-3011.2001.00816.x

    Article  CAS  Google Scholar 

  105. Wilson KR, Sedberry S, Pescatore R, Vinton D, Brian Love B et al (2016) Microwave-assisted cleavage of Alloc and Allyl ester protecting groups in solid phase peptide synthesis. J Pept Sci 22:622–627. https://doi.org/10.1002/psc.2910

    Article  CAS  PubMed  Google Scholar 

  106. Cavallaro V, Thompson P, Hearn M (1998) Solid phase synthesis of cyclic peptides: model studies involving i-(i+4) side chain-to-side chain cyclisation. J Pept Sci 4:335–343. https://doi.org/10.1002/(SICI)1099-1387(199808)4:5<335::AID-PSC155>3.0.CO;2-%23

  107. Schaaper WMM, Adan AH, Posthuma TA, Oosterom J, Gispen W-H, Meloen RH (1998) Synthesis of cyclic a-MSH peptides. Lett Pept Sci 5:205–208. https://doi.org/10.1007/BF02443470

    Article  CAS  Google Scholar 

  108. Nash IA, Bycroft BW, Chan WC (1996) Dde – a selective primary amine protecting group: a facile solid phase synthetic approach to polyamine conjugates. Tetrahedron Lett 37(15):2625–2628. https://doi.org/10.1016/0040-4039(96)00344-9

    Article  CAS  Google Scholar 

  109. Chhabra SR, Parekh H, Khan AN, Bycroft BW, Kellam B (2001) A Dde-based carboxy linker for solid-phase synthesis. Tetrahedron Lett 42:2189–2192. https://doi.org/10.1016/S0040-4039(01)00101-0

    Article  CAS  Google Scholar 

  110. Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39:1603–1606. https://doi.org/10.1016/S0040-4039(97)10828-0

    Article  CAS  Google Scholar 

  111. Xu Y, Wang T, Guan C-J, Li Y-M, Liu L, Shi J, Bierer D (2017) Dmab/ivDde protected diaminodiacids for solid-phase synthesis of peptide disulfide-bond mimics. Tetrahedron Lett 58:1677–1680. https://doi.org/10.1016/j.tetlet.2017.03.024

    Article  CAS  Google Scholar 

  112. Díaz-Mochón JJ, Bialy L, Bradley M (2004) Full orthogonality between Dde and Fmoc: the direct synthesis of PNA-peptide conjugates. Org Lett 6(7):1127–1129. https://doi.org/10.1021/ol049905y

    Article  CAS  PubMed  Google Scholar 

  113. Li D, Elbert DL (2002) The kinetics of the removal of the N-methyltrityl (Mtt) group during the synthesis of branched peptides. J Peptide Res 60:300–303. https://doi.org/10.1034/j.1399-3011.2002.21018.x

    Article  CAS  Google Scholar 

  114. Matysiak S, Böldicke T, Tegge W, Frank R (1998) Evaluation of monomethoxytrityl and dimethoxytrityl as orthogonal amino protecting groups in Fmoc solid phase peptide synthesis. Tetrahedron Lett 39:1733–1734. https://doi.org/10.1016/S0040-4039(98)00055-0

    Article  CAS  Google Scholar 

  115. Ruiz-Santaquiteria M, Sánchez-Murcia PA, Toro MA, de Lucio H, Gutiérrez KJ et al (2017) First example of peptides targeting the dimer interface of Leishmania infantum trypanothione reductase with potent in vitro antileishmanial activity. Eur J Med Chem 135:49–59. https://doi.org/10.1016/j.ejmech.2017.04.020

    Article  CAS  PubMed  Google Scholar 

  116. Rui Chen R, Tolbert TJ (2011) On-resin convergent synthesis of a glycopeptide from HIV gp120 containing a high mannose type N-linked oligosaccharide. In: Mark SS (ed) Bioconjugation protocols: strategies and methods. Methods in molecular biology, vol 751. Springer, New York, NY, pp 343–355. https://doi.org/10.1007/978-1-61779-151-2_22

    Chapter  Google Scholar 

  117. Karas J, Shabanpoor F, Hossain MA, Gardiner J, Separovic F, Wade JD, Scanlon DB (2013) Total chemical synthesis of a heterodimeric interchain bis-lactam-linked peptide: application to an analogue of human insulin-like peptide 3. Int J Pept 2013:Article ID 504260. https://doi.org/10.1155/2013/504260

    Article  CAS  Google Scholar 

  118. Prior AM, Hori T, Fishman A, Sun D (2018) Recent reports of solid-phase cyclohexapeptide synthesis and applications. Molecules 23:1475. https://doi.org/10.3390/molecules23061475

    Article  CAS  PubMed Central  Google Scholar 

  119. Trzeciak A, Bannwarth W (1992) Synthesis of “head-to-tail” cyclized peptides on solid support by Fmoc chemistry. Tetrahedron Lett 33(32):4557–4560. https://doi.org/10.1016/S0040-4039(00)61311-4

    Article  CAS  Google Scholar 

  120. Pini A, Falciani C, Bracci L (2008) Branched peptides as therapeutics. Curr Prot Pept Sci 9:468–477. https://doi.org/10.2174/138920308785915227

    Article  CAS  Google Scholar 

  121. Tam JP (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85:5409–5413. https://doi.org/10.1073/pnas.85.15.5409

    Article  CAS  Google Scholar 

  122. Joshi VG, Dighe VD, Thakuria D, Malik YS, Kumar S (2013) Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian J Virol 24(3):312–320. https://doi.org/10.1007/s13337-013-0162-z

    Article  PubMed  PubMed Central  Google Scholar 

  123. Aletras A, Barlos K, Gatos D, Koutsogianni S, Mamos P (1995) Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH. Application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suiTable for the solid-phase assembly of MAPs and TASPs. Int J Pept Protein Res 45:488–496. https://doi.org/10.1111/j.1399-3011.1995.tb01065.x

    Article  Google Scholar 

  124. Bloomberg GB, Askin D, Garago AR, Tanner MJA (1993) Synthesis of a branched cyclic peptide using a strategy employing Fmoc chemistry and two additional orthogonal protecting groups. Tetrahedron Lett 34(29):4709–4712. https://doi.org/10.1016/S0040-4039(00)60663-9

    Article  CAS  Google Scholar 

  125. Stavrakoudis A, Makropoulou S, Tsikaris V, Sakarellos-Daitsiotis M, Sakarellos C et al (2003) Computational screening of branched cyclic peptide motifs as potential enzyme mimetics. J Peptide Sci 9:145–155. https://doi.org/10.1002/psc.441

    Article  CAS  Google Scholar 

  126. Singh Y, Dolphin GT, Razkin J, Dumy P (2006) Synthetic peptide templates for molecular recognition: recent advances and applications. Chembiochem 7:1298–1314. https://doi.org/10.1002/cbic.200600078

    Article  CAS  PubMed  Google Scholar 

  127. Haehnel W (2004) Chemical synthesis of TASP arrays and their application in protein design. Mol Divers 8:219–229. https://doi.org/10.1023/B:MODI.0000036252.33928.14

    Article  CAS  PubMed  Google Scholar 

  128. Quibell M, Johnson T (2000) Difficult peptides. In: Chan WC, White PD (eds) Fmoc solid phase peptide synthesis – a practical approach. Oxford University Press, New York, NY, pp 115–135

    Google Scholar 

  129. Bedford J, Hyde C, Johnson T, Jun W, Owen JW, Quibell M, Sheppard RC (1992) Amino acid structure and “difficult sequences” in solid phase peptide synthesis. Int J Pept Protein Res 40:300–307. https://doi.org/10.1111/j.1399-3011.1992.tb00305.x

    Article  Google Scholar 

  130. Haack T, Mutter M (1992) Serine derived oxazolidines as secondary structure disrupting, solubilizing building blocks in peptide synthesis. Tetrahedron Lett 33(12):1589–1592. https://doi.org/10.1016/S0040-4039(00)91681-2

    Article  CAS  Google Scholar 

  131. Wöhr T, Wahl F, Nefzi A, Rohwedder B, Sato T, Sun X, Mutter M (1996) Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J Am Chem Soc 118:9218–9227. https://doi.org/10.1021/ja961509q

    Article  Google Scholar 

  132. Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian H, Bienert M, Beyermann M (2004) Synthesis of ‘difficult’ peptide sequences: application of a depsipeptide technique to the Jung-Redemann 10- and 26-mers and the amyloid peptide Aβ(1-42). Tetrahedron Lett 45:7519–7523. https://doi.org/10.1016/j.tetlet.2004.07.162

    Article  CAS  Google Scholar 

  133. Sohma Y, Hayashi Y, Kimura M, Chiyomori Y, Taniguchi A et al (2005) The ‘O-acyl isopeptide method’ for the synthesis of difficult sequence-containing peptides: application to the synthesis of Alzheimer’s desease-related amyloid b peptide (Aβ) 1-42. J Peptide Sci 11:441–451. https://doi.org/10.1002/psc.649

    Article  CAS  Google Scholar 

  134. Winkler DFH, Tian K (2015) Investigation of the automated solid-phase synthesis of a 38mer peptide with difficult sequence pattern under different synthesis strategies. Amino Acids 47:787–794. https://doi.org/10.1007/s00726-014-1909-6

    Article  CAS  PubMed  Google Scholar 

  135. García-Martín F, White P, Steinauer R, Côté S, Tulla-Puche J, Albericio F (2006) The synergy of ChemMatrix resin and pseudoproline building blocks renders RANTES, a complex aggregated chemokine. Biopolymers (Pept Sci) 84:566–575. https://doi.org/10.1002/bip.20564

    Article  CAS  Google Scholar 

  136. Hyde C, Johnson T, Owen D, Quibell M, Sheppard RC (1994) Some ‘difficult sequences’ made easy: a study of interchain association in solid-phase peptide synthesis. Int J Pept Protein Res 43:431–440. https://doi.org/10.1111/j.1399-3011.1994.tb00541.x

    Article  Google Scholar 

  137. Johnson T, Quibell M, Owen D, Sheppard RC (1993) A reversible protecting group for the amide bond in peptides. Use in the synthesis of ‘difficult sequences’. J Chem Soc Chem Commun 1993:369–372. https://doi.org/10.1039/C39930000369

    Article  Google Scholar 

  138. Cardona V, Eberle I, Barthélémy S, Beythien J, Doerner B et al (2008) Application of Dmb-dipeptides in the Fmoc SPPS of difficult and aspartimide-prone sequences. Int J Pept Res Ther 14:285–292. https://doi.org/10.1007/s10989-008-9154-z

    Article  CAS  Google Scholar 

  139. Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J Biol Chem 262(2):785–794

    Google Scholar 

  140. Stathopoulos P, Papas S, Kostidis S, Tsikaris V (2005) α- and β- Aspartyl peptide ester formation via aspartimide ring opening. J Peptide Sci 11:658–664. https://doi.org/10.1002/psc.675

    Article  CAS  Google Scholar 

  141. Capasso S, Di Cerbo P (2000) Kinetic and thermodynamic control of the relative yield of the deamidation of asparagine and the isomerization of aspartic acid residues. J Peptide Res 56:382–387. https://doi.org/10.1034/j.1399-3011.2000.00778.x

    Article  CAS  Google Scholar 

  142. Bogdanovich-Knipp SJ, Chakrabarti S, Williams TD, Dillman RK, Siahaan TJ (1999) Solution stability of linear vs. Cyclic RGD peptides. J Peptide Res 53:530–541. https://doi.org/10.1034/j.1399-3011.1999.00052.x

    Article  CAS  Google Scholar 

  143. Mergler M, Dick F, Sax B, Stähelin C, Vorherr T (2003) The aspartimide problem in Fmoc-based SPPS. Part II. J Peptide Sci 9:518–526. https://doi.org/10.1002/psc.473

    Article  CAS  Google Scholar 

  144. Kates SA, Albericio F (1994) Rearrangement of Glu(OtBu)- and Asp(OtBu)-containing peptides upon fluoride treatment in solid-phase synthesis. Lett Pept Sci 1:213–220. https://doi.org/10.1007/BF00127267

    Article  CAS  Google Scholar 

  145. Lauer JL, Fields CG, Fields GB (1994) Sequence dependence of aspartimide formation during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Lett Pept Sci 1:197–205. https://doi.org/10.1007/BF00117955

    Article  CAS  Google Scholar 

  146. Abdel-Aal A-BM, Papageorgiou G, Raz R, Quibell M, Burlina F, Offer J (2016) A backbone amide protecting group for overcoming difficult sequences and suppressing aspartimide formation. J Pept Sci 22:360–367. https://doi.org/10.1002/psc.2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mergler M, Dick F, Sax B, Weiler P, Vorherr T (2003) The aspartimide problem in Fmoc-based SPPS. Part I. J Peptide Sci 9:36–46. https://doi.org/10.1002/psc.430

    Article  CAS  Google Scholar 

  148. Mergler M, Dick F (2005) The aspartimide problem in Fmoc-based SPPS. Part III. J Peptide Sci 11:650–657. https://doi.org/10.1002/psc.668

    Article  CAS  Google Scholar 

  149. Behrendt R, Hubera S, White P (2016) Preventing aspartimide formation in Fmoc SPPS of Asp-Gly containing peptides – practical aspects of new trialkylcarbinol based protecting groups. J Pept Sci 22:92–97. https://doi.org/10.1002/psc.2844

    Article  CAS  PubMed  Google Scholar 

  150. Cebrián J, Domingo V, Reig F (2003) Synthesis of peptide sequences related to thrombospondin: factors affecting aspartimide by-product formation. J Peptide Res 62:238–244. https://doi.org/10.1046/j.1399-3011.2003.00093.x

    Article  CAS  Google Scholar 

  151. Subirós-Funosas R, El-Faham A, Albericio F (2011) Aspartimide formation in peptide chemistry: occurrence, prevention strategies and the role of N-hydroxylamines. Tetrahedron 67:8595–8606. https://doi.org/10.1016/j.tet.2011.08.046

    Article  CAS  Google Scholar 

  152. Toniolo C, Bonora GM, Mutter M, Pillai VNR (1981) Linear oligopeptides, 77. The effect of the insertion of a proline residue on the solid-state conformation of host peptides. Macromol Chem Phys 182(7):1997–2005. https://doi.org/10.1002/macp.1981.021820712

    Article  CAS  Google Scholar 

  153. Toniolo C, Bonora GM, Mutter M, Pillai VNR (1981) Linear oligopeptides, 78. The effect of the insertion of the proline residue on the solution conformation of host peptides. Macromol Chem Phys 182(7):2007–2014. https://doi.org/10.1002/macp.1981.021820713

    Article  CAS  Google Scholar 

  154. Goolcharran C, Borchardt RT (1998) Kinetics of diketopiperazine formation using model peptides. J Pharm Sci 87(3):283–288. https://doi.org/10.1021/js970325m

    Article  CAS  PubMed  Google Scholar 

  155. Fischer PM (2003) Diketopiperazines in peptide and combinatorial chemistry. J Peptide Sci 9:9–35. https://doi.org/10.1002/psc.446

    Article  CAS  Google Scholar 

  156. Bray AM, Maeji NJ, Valerio RM, Campbell RA, Geysen HM (1991) Direct cleavage from a solid support into aqueous buffer. Application in simultaneous multiple peptide synthesis. J Org Chem 56:6659–6666. https://doi.org/10.1021/jo00023a035

    Article  CAS  Google Scholar 

  157. Adler S, Frank R, Lanzavecchia A, Weiss S (1994) T cell epitope analysis with peptides simultaneously synthesized on cellulose membranes: fine mapping of two DQ dependent epitopes. FEBS Lett 352:167–170. https://doi.org/10.1016/0014-5793(94)00950-3

    Article  CAS  PubMed  Google Scholar 

  158. Sieber P (1987) Modification of tryptophan residues during acidolysis of 4-methoxy-2,3,6-trimethylbenzenesulfonyl groups. Effect of scavengers. Tetrahedron Lett 28(15):1637–1640. https://doi.org/10.1016/S0040-4039(00)95379-6

    Article  CAS  Google Scholar 

  159. Stierandova A, Sepetov NF, Nikiforovich GV, Lebl M (1994) Sequence-dependent modification of Trp by the Pmc protecting group of Arg during TFA deprotection. Int J Pept Protein Res 43:31–38. https://doi.org/10.1111/j.1399-3011.1994.tb00373.x

    Article  Google Scholar 

  160. Giraud M, Cavelier F, Martinez J (1999) A side-reaction in the SPPS of Trp-containing peptides. J Pept Sci 5:457–461. https://doi.org/10.1002/(SICI)1099-1387(199910)5:10<457::AID-PSC215>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  161. Choi H, Aldrich JV (1993) Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine. Int J Pept Protein Res 42:58–63. https://doi.org/10.1111/j.1399-3011.1993.tb00350.x

    Article  Google Scholar 

  162. Fields CG, Fields GB (1993) Minimization of tryptophan alkylation following 9-fluorenylmethoxycarbonyl solid- phase peptide synthesis. Tetrahedron Lett 34(42):6661–6664. https://doi.org/10.1016/S0040-4039(00)61669-6

    Article  CAS  Google Scholar 

  163. Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46:490–498. https://doi.org/10.1021/jf970818c

    Article  CAS  PubMed  Google Scholar 

  164. Fuentes-Lemus E, Dorta E, Escobar E, Aspée A, Pino E et al (2016) Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: role of alkoxyl and peroxyl radicals. RSC Adv 6:57948–57955. https://doi.org/10.1039/c6ra12859a

    Article  CAS  Google Scholar 

  165. Ehrenshaft M, Deterding LJ, Mason RP (2015) Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med 89:220–228. https://doi.org/10.1016/j.freeradbiomed.2015.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ji JA, Zhang B, Cheng W, Wang YJ (2009) Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization. J Pharma Sci 98:4485–4500. https://doi.org/10.1002/jps.21746

    Article  CAS  Google Scholar 

  167. Han Y, Albericio F, Barany G (1997) Occurrence and minimization of cysteine racemization during stepwise SPPS. J Org Chem 62:4307–4312. https://doi.org/10.1021/jo9622744

    Article  CAS  PubMed  Google Scholar 

  168. Fujiwara Y, Akaji K, Kiso Y (1994) Racemization-free synthesis of C-terminal cysteine-peptide using 2-chlorotrityl resin. Chem Pharm Bull (Tokyo) 42(3):724–726. https://doi.org/10.1248/cpb.42.724

    Article  CAS  Google Scholar 

  169. Hibino H, Miki Y, Nishiuchia Y (2014) Evaluation of acid-labile S-protecting groups to prevent Cys racemization in Fmoc solid-phase peptide synthesis. J Pept Sci 20:30–35. https://doi.org/10.1002/psc.2585

    Article  CAS  PubMed  Google Scholar 

  170. Harding SJ, Heslop I, Jones JH, Wood ME (1995) The racemization of histidine in peptide synthesis: further studies. In: Maia HLS (ed) Peptides 1994. Proceedings of the twenty-third European Peptide Symposium September 4-10, 1994, Braga. Escom, Leiden, pp 189–190

    Google Scholar 

  171. Huang H, Rabenstein DL (1999) A cleavage cocktail for methionine-containing peptides. J Peptide Res 54:548–553. https://doi.org/10.1034/j.1399-3011.1999.00059.x

    Article  CAS  Google Scholar 

  172. Vrettos EI, Sayyad N, Mavrogiannaki EM, Stylos E, Kostagianni AD (2017) Unveiling and tackling guanidinium peptide coupling reagent side reactions towards the development of peptide-drug conjugates. RSC Adv 7:50519–50526. https://doi.org/10.1039/c7ra06655d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Winkler, D.F.H. (2020). Automated Solid-Phase Peptide Synthesis. In: Hussein, W., Skwarczynski, M., Toth, I. (eds) Peptide Synthesis. Methods in Molecular Biology, vol 2103. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0227-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0227-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0226-3

  • Online ISBN: 978-1-0716-0227-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics