Skip to main content

Bioinformatic Application of Fluorescence-Based In Vivo RNA Regional Accessibility Data to Identify Novel sRNA Targets

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Data from fluorescence-based methods that measure in vivo hybridization efficacy of unique RNA regions can be used to infer regulatory activity and to identify novel RNA: RNA interactions. Here, we document the step-by-step analysis of fluorescence data collected using an in vivo regional RNA structural sensing system (iRS3) for the purpose of identifying potential functional sites that are likely to be involved in regulatory interactions. We also detail a step-by-step protocol that couples thisĀ in vivo accessibility data with computational mRNA target predictions to inform the selection of potentially true targets from long lists of thermodynamic predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutta T, Srivastava S (2018) Small RNA-mediated regulation in bacteria: a growing palette of diverse mechanisms. Gene 656:60ā€“72. https://doi.org/10.1016/j.gene.2018.02.068

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Gelderman G, Contreras LM (2013) Discovery of posttranscriptional regulatory RNAs using next generation sequencing technologies. In: Alper HS (ed) Systems metabolic engineering: methods and protocols. Humana Press, Totowa, NJ, pp 269ā€“295. https://doi.org/10.1007/978-1-62703-299-5_14

    ChapterĀ  Google ScholarĀ 

  3. Leistra AN, Curtis NC, Contreras LM (2019) Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 52:190ā€“214. https://doi.org/10.1016/j.ymben.2018.11.013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Carrier M-C, Lalaouna D, MassĆ© E (2016) A game of tag: MAPS catches up on RNA interactomes. RNA Biol 13(5):473ā€“476. https://doi.org/10.1080/15476286.2016.1156830

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Figueroa-Bossi N, Bossi L (2018) Sponges and predators in the small RNA world. Microbiol Spectr 6(4). https://doi.org/10.1128/microbiolspec.RWR-0021-2018

  6. Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108(24):10010ā€“10015. https://doi.org/10.1073/pnas.1017386108

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Liu T, Zhang K, Xu S, Wang Z, Fu H, Tian B, Zheng X, Li W (2017) Detecting RNA-RNA interactions in E. coli using a modified CLASH method. BMC Genomics 18(1):343. https://doi.org/10.1186/s12864-017-3725-3

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Schƶnberger B, Schaal C, SchƤfer R, VoƟ B (2018) RNA interactomics: recent advances and remaining challenges [version 1; referees: 2 approved]. F1000Res 7(1824). https://doi.org/10.12688/f1000research.16146.1

    ArticleĀ  Google ScholarĀ 

  9. Melamed S, Peer A, Faigenbaum-Romm R, Gatt Yair E, Reiss N, Bar A, Altuvia Y, Argaman L, Margalit H (2016) Global mapping of small RNA-target interactions in Bacteria. Mol Cell 63(5):884ā€“897. https://doi.org/10.1016/j.molcel.2016.07.026

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Melamed S, Faigenbaum-Romm R, Peer A, Reiss N, Shechter O, Bar A, Altuvia Y, Argaman L, Margalit H (2017) Mapping the small RNA interactome in bacteria using RIL-seq. Nat Protoc 13:1. https://doi.org/10.1038/nprot.2017.115. https://www.nature.com/articles/nprot.2017.115#supplementary-information

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP, Amos TG, Leong KW, Wilkins MR, Strugnell R, Gally DL, Tollervey D, Tree JJ (2017) Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36(3):374ā€“387. https://doi.org/10.15252/embj.201694639

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Pain A, Ott A, Amine H, Rochat T, Bouloc P, Gautheret D (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol 12(5):509ā€“513. https://doi.org/10.1080/15476286.2015.1020269

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Beisel CL, Storz G (2010) Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 34(5):866ā€“882. https://doi.org/10.1111/j.1574-6976.2010.00241.x

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Holmqvist E, Vogel J (2018) RNA-binding proteins in bacteria. Nat Rev Microbiol. https://doi.org/10.1038/s41579-018-0049-5

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Peer A, Margalit H (2014) Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. RNA (New York, NY) 20(7):994ā€“1003. https://doi.org/10.1261/rna.043133.113

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Sowa SW, Vazquez-Anderson J, Clark CA, De La PeƱa R, Dunn K, Fung EK, Khoury MJ, Contreras LM (2015) Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 43(2):e13ā€“e13. https://doi.org/10.1093/nar/gku1191

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24. https://doi.org/10.1093/bioinformatics/btn544

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Wright PR, Georg J, Mann M, Sorescu DA, Richter AS, Lott S, Kleinkauf R, Hess WR, Backofen R (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res 42(Web Server issue):W119ā€“W123. https://doi.org/10.1093/nar/gku359

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Mann M, Wright PR, Backofen R (2017) IntaRNA 2.0: enhanced and customizable prediction of RNAā€“RNA interactions. Nucleic Acids Res 45(Web Server issue):W435ā€“W439. https://doi.org/10.1093/nar/gkx279

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Leistra AN, Mihailovic MK, Contreras LM (2018) Fluorescence-based methods for characterizing RNA interactions in vivo. Methods in Mol Biol 1737:129ā€“164. https://doi.org/10.1007/978-1-4939-7634-8_9

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Mihailovic MK, Vazquez-Anderson J, Li Y, Fry V, Vimalathas P, Herrera D, Lease RA, Powell WB, Contreras LM (2018) High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat Commun 9(1):4084. https://doi.org/10.1038/s41467-018-06207-z

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Gruber CC, Sperandio V (2015) Global analysis of posttranscriptional regulation by GlmY and GlmZ in Enterohemorrhagic Escherichia coli O157:H7. Infect Immun 83(4):1286ā€“1295. https://doi.org/10.1128/IAI.02918-14

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google ScholarĀ 

  24. MĆ¼ller K, Wickham H, FranƧois R, Henry L (2018) dplyr: A Grammar of Data Manipulation

    Google ScholarĀ 

  25. H. PagĆØs P Aboyoun, R. Gentleman and S. DebRoy (2018) Biostrings: Efficient manipulation of biological strings

    Google ScholarĀ 

  26. Wickham H (2018) stringr: Simple, Consistent Wrappers for Common String Operations

    Google ScholarĀ 

  27. Anaconda Software Distribution (2017) Computer software. Vers. 2ā€“2.4.0. Anaconda, Inc.

    Google ScholarĀ 

  28. McKinney W (2011) pandas: a Foundational Python Library for Data Analysis and Statistics

    Google ScholarĀ 

  29. ThorvaldsdĆ³ttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178ā€“192. https://doi.org/10.1093/bib/bbs017

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM (2017) Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 45(9):5523ā€“5538. https://doi.org/10.1093/nar/gkx115

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403ā€“410. https://doi.org/10.1016/S0022-2836(05)80360-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Leistra AN, Amador P, Buvanendiran A, Moon-Walker A, Contreras LM (2017) Rational modular RNA engineering based on in vivo profiling of structural accessibility. ACS Synth Biol. https://doi.org/10.1021/acssynbio.7b00185

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Green AA, Silver PA, Collins JJ, Yin P (2014) Toehold switches: De-novo-designed regulators of gene expression. Cell 159(4):925ā€“939. https://doi.org/10.1016/j.cell.2014.10.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32(1):170ā€“173. https://doi.org/10.1002/jcc.21596

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, MuƱiz-Rascado L, GarcĆ­a-Sotelo JS, Alquicira-HernĆ”ndez K, MartĆ­nez-Flores I, Pannier L, Castro-MondragĆ³n JA, Medina-Rivera A, Solano-Lira H, Bonavides-MartĆ­nez C, PĆ©rez-Rueda E, Alquicira-HernĆ”ndez S, PorrĆ³n-Sotelo L, LĆ³pez-Fuentes A, HernĆ”ndez-Koutoucheva A, Del Moral-ChĆ”vez V, Rinaldi F, Collado-Vides J (2016) RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res 44(D1):D133ā€“D143. https://doi.org/10.1093/nar/gkv1156

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158ā€“D169. https://doi.org/10.1093/nar/gkw1099

Download references

Acknowledgments

This work is supported by the Welch Foundation (Grant F-1756 to LMC) and the National Science Foundation (Grant MCB 1716777 to LMC and DGE-1610403 to MKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia M. Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bowman, E.K., Mihailovic, M.K., Li, B., Contreras, L.M. (2020). Bioinformatic Application of Fluorescence-Based In Vivo RNA Regional Accessibility Data to Identify Novel sRNA Targets. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics