Skip to main content

Interactive Alternative Splicing Analysis of Human Stem Cells Using psichomics

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

Abstract

Alternative splicing (AS) generates functionally distinct transcripts and is involved in multiple cellular processes, including stem cell differentiation. Several epithelial-to-mesenchymal transition-related splicing factors have also been associated with pluripotency. Concomitantly with the interest in studying AS in stem cell biology, the advent of next-generation sequencing of RNA (RNA-seq) has increased the public availability of transcriptomic data and enabled genome-wide AS studies. To facilitate performing such analyses in large publicly available or user-provided transcriptomics datasets, the psichomics R package provides an easy-to-use interface and efficient data visualization tools for AS quantification and integrative analyses of AS and gene expression data.

psichomics is employed herein to study AS changes between human stem cells and fibroblasts, based on dimensionality reduction, and median- and variance-based differential AS and gene expression analyses. Putative RNA-binding protein regulators involved in those alterations are then identified based on correlation analyses in large cohorts of human tissue transcriptomes. We identified several alterations, both novel and previously reported, in alternative splicing events and in the expression of their candidate regulators that are associated with stem cell differentiation into fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paronetto MP, Passacantilli I, Sette C (2016) Alternative splicing and cell survival: from tissue homeostasis to disease. Cell Death Differ 23:1919–1929. https://doi.org/10.1038/cdd.2016.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbosa-Morais NL, Irimia M, Pan Q et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593. https://doi.org/10.1126/science.1230612

    Article  CAS  PubMed  Google Scholar 

  4. Gallego-Paez LM, Bordone MC, Leote AC et al (2017) Alternative splicing: the pledge, the turn, and the prestige: the key role of alternative splicing in human biological systems. Hum Genet 136:1015–1042. https://doi.org/10.1007/s00439-017-1790-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oltean S, Bates DO (2014) Hallmarks of alternative splicing in cancer. Oncogene 33:5311–5318. https://doi.org/10.1038/onc.2013.533

    Article  CAS  PubMed  Google Scholar 

  6. Zavolan M, Kanitz A (2018) RNA splicing and its connection with other regulatory layers in somatic cell reprogramming. Curr Opin Cell Biol 52:8–13. https://doi.org/10.1016/j.ceb.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  7. Gabut M, Samavarchi-Tehrani P, Wang X et al (2011) An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147:132–146. https://doi.org/10.1016/j.cell.2011.08.023

    Article  CAS  PubMed  Google Scholar 

  8. Han H, Irimia M, Ross PJ et al (2013) MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498:241–245. https://doi.org/10.1038/nature12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venables JP, Lapasset L, Gadea G et al (2013) MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun 4:2480. https://doi.org/10.1038/ncomms3480

    Article  PubMed  Google Scholar 

  10. Chen K, Dai X, Wu J (2015) Alternative splicing: an important mechanism in stem cell biology. World J Stem Cells 7(1):10. https://doi.org/10.4252/wjsc.v7.i1.1

    Article  CAS  Google Scholar 

  11. Pradella D, Naro C, Sette C, Ghigna C (2017) EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer 16(8). https://doi.org/10.1186/s12943-016-0579-2

  12. Aponte PM, Caicedo A (2017) Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int 2017:5619472–5619417. https://doi.org/10.1155/2017/5619472

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saraiva-Agostinho N, Barbosa-Morais NL (2019) psichomics: graphical application for alternative splicing quantification and analysis. Nucleic Acids Res 47:e7–e7. https://doi.org/10.1093/nar/gky888

    Article  CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45:1113–1120. https://doi.org/10.1038/ng.2764

    Article  CAS  PubMed Central  Google Scholar 

  15. The GTEx Consortium (2013) The genotype-tissue expression (GTEx) project. Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

    Article  PubMed Central  Google Scholar 

  16. Collado-Torres L, Nellore A, Kammers K et al (2017) Reproducible RNA-seq analysis using recount2. Nat Biotechnol 35:319–321. https://doi.org/10.1038/nbt.3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi J, Lee S, Mallard W et al (2015) A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol 33:1173–1181. https://doi.org/10.1038/nbt.3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R Core Team (2016) R: A language and environment for statistical computing, Vienna, Austria

    Google Scholar 

  19. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  21. Ritchie ME, Phipson B, Di W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fagoonee S, Bearzi C, Di Cunto F et al (2013) The RNA binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells. PLoS One 8:e72300. https://doi.org/10.1371/journal.pone.0072300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roberts RJ (2001) PubMed Central: The GenBank of the published literature. Proc Natl Acad Sci U S A 98:381–382. https://doi.org/10.1073/pnas.98.2.381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cunningham F, Amode MR, Barrell D et al (2015) Ensembl 2015. Nucleic Acids Res 43:D662–D669. https://doi.org/10.1093/nar/gku1010

    Article  CAS  PubMed  Google Scholar 

  25. Wu CH, Apweiler R, Bairoch A et al (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191. https://doi.org/10.1093/nar/gkj161

    Article  CAS  PubMed  Google Scholar 

  26. Tapial J, Ha KCH, Sterne-Weiler T et al (2017) An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 27:1759–1768. https://doi.org/10.1101/gr.220962.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warzecha CC, Jiang P, Amirikian K et al (2010) An ESRP-regulated splicing programme is abrogated during the epithelial-mesenchymal transition. EMBO J 29:3286–3300. https://doi.org/10.1038/emboj.2010.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Irimia M, Weatheritt RJ, Ellis JD et al (2014) A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159:1511–1523. https://doi.org/10.1016/j.cell.2014.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015. https://doi.org/10.1038/nmeth.1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alamancos GP, Pagès A, Trincado JL et al (2015) Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21:1521–1531. https://doi.org/10.1261/rna.051557.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen S, Park JW, Lu Z-X et al (2014) rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A 111:E5593–E5601. https://doi.org/10.1073/pnas.1419161111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Sun J (2010) Interval censoring. Stat Methods Med Res 19:53–70. https://doi.org/10.1177/0962280209105023

    Article  PubMed  Google Scholar 

  33. Qiu W, Chavarro J, Lazarus R, et al powerSurvEpi: power and sample size calculation for survival analysis of epidemiological studies

    Google Scholar 

  34. Sebestyén E, Singh B, Miñana B, Pagès A, Mateo F, Pujana MA, Valcárcel J, Eyras E (2016) Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res 26(6):732–744. https://doi.org/10.1101/gr.199935.115

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Marie Bordone, Mariana Ferreira, Sara Mendes, Marta Bica, and Arthur Schneider, for providing valuable feedback and other contributions to the chapter and psichomics.

This work is a result of the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT). This work was also supported by: UID/BIM/50005/2019, project funded by Fundação para a Ciência e a Tecnologia (FCT)/ Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Fundos do Orçamento de Estado; European Molecular Biology Organization [EMBO Installation Grant 3057 to N.L.B.-M.]; Fundação para a Ciência e a Tecnologia [FCT Investigator Starting Grant IF/00595/2014 to N.L.B.-M., PhD Studentship SFRH/BD/131312/2017 to N.S.-A., project PERSEIDS PTDC/EMS-SIS/0642/2014].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuno Saraiva-Agostinho or Nuno Luís Barbosa-Morais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saraiva-Agostinho, N., Barbosa-Morais, N.L. (2020). Interactive Alternative Splicing Analysis of Human Stem Cells Using psichomics. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics