Skip to main content

Determining Beta Cell Mass, Apoptosis, Proliferation, and Individual Beta Cell Size in Pancreatic Sections

  • Protocol
  • First Online:
Animal Models of Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2128))

Abstract

Pancreatic beta cells have a significant remodeling capacity which plays an essential role in the maintenance of glucose homeostasis. Beta cell apoptosis, replication, size, dedifferentiation, and (neo)generation contribute to the beta cell mass regulation. However, the extent of their respective contribution varies significantly depending on the specific condition, and it is the balance among them that determines the eventual change in beta cell mass. Thus, the study of the pancreatic beta cell mass regulation requires the determination of all these factors. In this chapter, we describe the quantification of beta cell replication based on the incorporation of thymidine analogs into replicated DNA strands and on the expression of Ki67 antigen and phosphorylation of histone H3. Beta cell apoptosis is analyzed by the TUNEL technique, and beta cell mass and cross-sectional area of individual beta cells are determined by computerized image processing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Montanya E (2014) Insulin resistance compensation: not just a matter of β-Cells? Diabetes 63(3):832–834. https://doi.org/10.2337/db13-1843

    Article  CAS  PubMed  Google Scholar 

  2. Tellez N, Joanny G, Escoriza J, Vilaseca M, Montanya E (2011) Gastrin treatment stimulates {beta}-cell regeneration and improves glucose tolerance in 95% pancreatectomized rats. Endocrinology 152(7):2580–2588

    Article  CAS  Google Scholar 

  3. Montanya E, Nacher V, Biarnes M, Soler J (2000) Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes 49(8):1341–1346

    Article  CAS  Google Scholar 

  4. Knip M (2017) Diabetes: loss of β-cell mass - an acute event before T1DM presentation? Nat Rev Endocrinol 13(5):253–254. https://doi.org/10.1038/nrendo.2017.33

    Article  CAS  PubMed  Google Scholar 

  5. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    Article  CAS  Google Scholar 

  6. Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M (2016) In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 59(7):1340–1349. https://doi.org/10.1007/s00125-016-3959-7

    Article  CAS  PubMed  Google Scholar 

  7. Brom M, Woliner-van der Weg W, Joosten L, Frielink C, Bouckenooghe T, Rijken P, Andralojc K, Göke BJ, de Jong M, Eizirik DL, Béhé M, Lahoutte T, Oyen WJ, Tack CJ, Janssen M, Boerman OC, Gotthardt M (2014) Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin. Diabetologia 57(5):950–959. https://doi.org/10.1007/s00125-014-3166-3

    Article  CAS  PubMed  Google Scholar 

  8. Tellez N, Montanya E (2014) Gastrin induces ductal cell dedifferentiation and beta-cell neogenesis after 90% pancreatectomy. J Endocrinol 223(1):67–78. https://doi.org/10.1530/JOE-14-0222

    Article  CAS  PubMed  Google Scholar 

  9. Spijker HS, Ravelli RB, Mommaas-Kienhuis AM, van Apeldoorn AA, Engelse MA, Zaldumbide A, Bonner-Weir S, Rabelink TJ, Hoeben RC, Clevers H, Mummery CL, Carlotti F, de Koning EJ (2013) Conversion of mature human β-cells into glucagon-producing α-cells. Diabetes 62(7):2471–2480. https://doi.org/10.2337/db12-1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Téllez N, Vilaseca M, Martí Y, Pla A, Montanya E (2016) β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats. Am J Physiol Endocrinol Metab 311(3):E554–E563. https://doi.org/10.1152/ajpendo.00502.2015

    Article  PubMed  Google Scholar 

  11. Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150(6):1223–1234. https://doi.org/10.1016/j.cell.2012.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, Sharma A, Bonner-Weir S (2008) Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A 105(50):19915–19919

    Article  CAS  Google Scholar 

  13. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL (2010) Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464(7292):1149–1154

    Article  CAS  Google Scholar 

  14. Russ HA, Bar Y, Ravassard P, Efrat S (2008) In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes 57(6):1575–1583. https://doi.org/10.2337/db07-1283

    Article  CAS  PubMed  Google Scholar 

  15. Téllez N, Montolio M, Estil-les E, Escoriza J, Soler J, Montanya E (2007) Adenoviral overproduction of interleukin-1 receptor antagonist increases beta cell replication and mass in syngeneically transplanted islets, and improves metabolic outcome. Diabetologia 50(3):602–611. https://doi.org/10.1007/s00125-006-0548-1

    Article  CAS  PubMed  Google Scholar 

  16. Estil les E, Téllez N, Escoriza J, Montanya E (2012) Increased β-cell replication and β-cell mass regeneration in syngeneically transplanted rat islets overexpressing insulin-like growth factor II. Cell Transplant 21(10):2119–2129. https://doi.org/10.3727/096368912X638955

    Article  PubMed  Google Scholar 

  17. Estil les E, Téllez N, Soler J, Montanya E (2009) High sensitivity of beta-cell replication to the inhibitory effects of interleukin-1beta: modulation by adenoviral overexpression of IGF2 in rat islets. J Endocrinol 203(1):55–63. https://doi.org/10.1677/JOE-09-0047

    Article  CAS  PubMed  Google Scholar 

  18. Téllez N, Montolio M, Biarnés M, Castaño E, Soler J, Montanya E (2005) Adenoviral overexpression of interleukin-1 receptor antagonist protein increases beta-cell replication in rat pancreatic islets. Gene Ther 12(2):120–128. https://doi.org/10.1038/sj.gt.3302351

    Article  CAS  PubMed  Google Scholar 

  19. Hija A, Salpeter S, Klochendler A, Grimsby J, Brandeis M, Glaser B, Dor Y (2014) G0-G1 transition and the restriction point in pancreatic β-cells in vivo. Diabetes 63(2):578–584. https://doi.org/10.2337/db12-1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diermeier-Daucher S, Clarke ST, Hill D, Vollmann-Zwerenz A, Bradford JA, Brockhoff G (2009) Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry A 75(6):535–546. https://doi.org/10.1002/cyto.a.20712

    Article  CAS  PubMed  Google Scholar 

  21. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420. https://doi.org/10.1073/pnas.0712168105

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carballar R, Canyelles ML, Fernández C, Martí Y, Bonnin S, Castaño E, Montanya E, Téllez N (2017) Purification of replicating pancreatic β-cells for gene expression studies. Sci Rep 7(1):17515. https://doi.org/10.1038/s41598-017-17776-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Catalan Diabetes Association (NT), University of Barcelona (NT), and Carlos III Health Institute (ISCIII) PI16/00462 co-funded by FEDER funds/European Regional Development Fund (ERDF) – “A Way to Build Europe” (EM) – and by CIBERDEM which is a project of ISCIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noèlia Téllez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Téllez, N., Montanya, E. (2020). Determining Beta Cell Mass, Apoptosis, Proliferation, and Individual Beta Cell Size in Pancreatic Sections. In: King, A. (eds) Animal Models of Diabetes. Methods in Molecular Biology, vol 2128. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0385-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0385-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0384-0

  • Online ISBN: 978-1-0716-0385-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics