Skip to main content

CMV Promoter-Driven Expression and Visualization of Tagged Proteins in Live and Fixed Zebrafish Embryonic Epidermis

  • Protocol
  • First Online:
Experimental Protocols in Biotechnology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In the recent past, zebrafish has emerged as a highly useful vertebrate model for biomedical research. Owing to its easy handling, suitability for high-throughput genetic and chemical screens, and tractability by high-resolution microscopy, it is possible to study molecular mechanisms of vertebrate development and disease biology using zebrafish. This chapter introduces zebrafish epidermis as a model for studying cell biology of epithelial tissues in vivo and describes the technique of protein expression using plasmid vectors having cytomegalovirus (CMV) promoter. It details protocols for microinjection of plasmids into fertilized zebrafish oocytes, screening of the epidermal clones expressing the tagged protein, immunostaining, and mounting of embryos for both fixed and live imaging by confocal microscopy. This collection of protocols allows for analysis of localization of a wide range of proteins including those involved in intracellular transport, cell polarity, cell adhesion, and so on, during early developmental stages of zebrafish embryos and larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Guellec D, Morvan-Dubois G, Sire JY (2004) Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish. Int J Dev Biol 48:217–231

    Article  Google Scholar 

  2. Sonawane M (2005) Zebrafish penner/lethal giant larvae 2 functions in hemidesmosome formation, maintenance of cellular morphology and growth regulation in the developing basal epidermis. Development 132:3255–3265

    Article  CAS  Google Scholar 

  3. Lee RTH, Asharani PV, Carney TJ (2014) Basal keratinocytes contribute to all strata of the adult zebrafish epidermis. PLoS One 9(1):e84858

    Article  Google Scholar 

  4. Sonawane M, Martin-Maischein H, Schwarz H et al (2009) Lgl2 and E-cadherin act antagonistically to regulate hemidesmosome formation during epidermal development in zebrafish. Development 136:1231–1240

    Article  CAS  Google Scholar 

  5. Reischauer S, Levesque MP, Nüsslein-Volhard C et al (2009) Lgl2 executes its function as a tumor suppressor by regulating ErbB signaling in the zebrafish epidermis. PLoS Genet 5(11):e1000720

    Article  Google Scholar 

  6. Morris JL, Cross SJ, Lu Y et al (2018) Live imaging of collagen deposition during skin development and repair in a collagen I—GFP fusion transgenic zebrafish line. Dev Biol 441(1):4–11

    Article  CAS  Google Scholar 

  7. Raman R, Damle I, Rote R et al (2016) APKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun 7:11643

    Article  CAS  Google Scholar 

  8. Pinto CS, Khandekar A, Bhavna R et al (2019) Microridges are apical epithelial projections formed of F-actin networks that organize the glycan layer. Sci Rep 9:12191

    Article  Google Scholar 

  9. Slanchev K, Carney TJ, Stemmler MP et al (2009) The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5:e1000563

    Article  Google Scholar 

  10. Webb AE, Driever W, Kimelman D (2008) Psoriasis regulates epidermal development in Zebrafish. Dev Dyn 237:1153–1164

    Article  CAS  Google Scholar 

  11. Morita H, Grigolon S, Bock M et al (2017) The physical basis of coordinated tissue spreading in Zebrafish gastrulation. Dev Cell 40:354–366

    Article  CAS  Google Scholar 

  12. Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10:673–680

    Article  CAS  Google Scholar 

  13. Eisenhoffer GT, Slattum G, Ruiz OE et al (2017) A toolbox to study epidermal cell types in zebrafish. J Cell Sci 130:269–277

    Article  CAS  Google Scholar 

  14. Gong Z, Ju B, Wang X et al (2002) Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn 223:204–215

    Article  CAS  Google Scholar 

  15. Clark BS, Winter M, Cohen AR et al (2011) Generation of Rab-based transgenic lines for in vivo studies of endosome biology in zebrafish. Dev Dyn 240:245–265

    Article  Google Scholar 

  16. Asakawa K, Kawakami K (2010) A transgenic zebrafish for monitoring in vivo microtubule structures. Dev Dyn 239:2695–2699

    Article  CAS  Google Scholar 

  17. Miyoshi H, Blömer U, Takahashi M et al (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–5157

    Article  CAS  Google Scholar 

  18. Turner DL, Weintraub H (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8:1434–1447

    Article  CAS  Google Scholar 

  19. Gökirmak T, Campanale JP, Shipp LE et al (2012) Localization and substrate selectivity of seaurchin multidrug (MDR) efflux transporters. J Biol Chem 287:43876–43883

    Article  Google Scholar 

  20. Nusslein-Volhard C, Dahm R (2002) Zebrafish: a practical approach. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

We would like to thank Sumit Sen for the illustrations, Dr. Clyde Pinto for contributing to Fig. 5, Geetika Chouhan and Mandar Phatak for critically reading the manuscript, and Kalidas Kohale for fish maintenance. This work was supported by funding from TIFR-DAE (12P-121).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, K., Sonawane, M. (2020). CMV Promoter-Driven Expression and Visualization of Tagged Proteins in Live and Fixed Zebrafish Embryonic Epidermis. In: Gupta, N., Gupta, V. (eds) Experimental Protocols in Biotechnology. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0607-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0607-0_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0606-3

  • Online ISBN: 978-1-0716-0607-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics