Skip to main content

Live-Cell FRET Imaging of Phosphorylation-Dependent Caveolin-1 Switch

  • Protocol
  • First Online:
Caveolae

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2169))

Abstract

The detection of dynamic conformational changes in proteins in live cells is challenging. Live-cell FRET (Förster Resonance Energy Transfer) is an example of a noninvasive technique that can be used to achieve this goal at nanometer resolution. FRET-based assays are dependent on the presence of fluorescent probes, such as CFP- and YFP-conjugated protein pairs. Here, we describe an experimental protocol in which live-cell FRET was used to measure conformational changes in caveolin-1 (Cav-1) oligomers on the surface of plasmalemma vesicles, or caveolae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez I, Ying Y, Albanesi J, Anderson RG (2002) Mechanism of caveolin filament assembly. Proc Natl Acad Sci U S A 99:11193–11198

    Article  CAS  Google Scholar 

  2. Shvets E, Ludwig A, Nichols BJ (2014) News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 29:99–106

    Article  CAS  Google Scholar 

  3. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  Google Scholar 

  4. Sverdlov M, Shinin V, Place AT, Castellon M, Minshall RD (2009) Filamin A regulates caveolae internalization and trafficking in endothelial cells. Mol Biol Cell 20:4531–4540

    Article  CAS  Google Scholar 

  5. Lisanti MP, Tang Z, Scherer PE, Kubler E, Koleske AJ, Sargiacomo M (1995) Caveolae, transmembrane signalling and cellular transformation. Mol Membr Biol 12:121–124

    Article  CAS  Google Scholar 

  6. Fielding CJ, Fielding PE (2001) Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev 49:251–264

    Article  CAS  Google Scholar 

  7. Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413

    Article  CAS  Google Scholar 

  8. Zimnicka AM, Husain YS, Shajahan AN, Sverdlov M, Chaga O, Chen Z, Toth PT, Klomp J, Karginov AV, Tiruppathi C, Malik AB, Minshall RD (2016) Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Mol Biol Cell 27:2090–2106

    Article  Google Scholar 

  9. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  Google Scholar 

  10. Shrestha D, Jenei A, Nagy P, Vereb G, Szollosi J (2015) Understanding FRET as a research tool for cellular studies. Int J Mol Sci 16:6718–6756

    Article  CAS  Google Scholar 

  11. Gauer JW, LeBlanc S, Hao P, Qiu R, Case BC, Sakato M, Hingorani MM, Erie DA, Weninger KR (2016) Single-molecule FRET to measure conformational dynamics of DNA mismatch repair proteins. Methods Enzymol 581:285–315

    Article  CAS  Google Scholar 

  12. Katz RA, Merkel G, Andrake MD, Roder H, Skalka AM (2011) Retroviral integrases promote fraying of viral DNA ends. J Biol Chem 286:25710–25718

    Article  CAS  Google Scholar 

  13. Ben-Johny M, Yue DN, Yue DT (2016) Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nat Commun 7:13709

    Article  Google Scholar 

  14. Butz ES, Ben-Johny M, Shen M, Yang PS, Sang L, Biel M, Yue DT, Wahl-Schott C (2016) Quantifying macromolecular interactions in living cells using FRET two-hybrid assays. Nat Protoc 11:2470–2498

    Article  CAS  Google Scholar 

  15. Chen Z, Bakhshi FR, Shajahan AN, Sharma T, Mao M, Trane A, Bernatchez P, van Nieuw Amerongen GP, Bonini MG, Skidgel RA, Malik AB, Minshall RD (2012) Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell 23:1388–1398

    Article  CAS  Google Scholar 

  16. Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269

    Article  CAS  Google Scholar 

  17. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  18. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  19. von Stetten D, Noirclerc-Savoye M, Goedhart J, Gadella TW Jr, Royant A (2012) Structure of a fluorescent protein from Aequorea victoria bearing the obligate-monomer mutation A206K. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:878–882

    Article  Google Scholar 

  20. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916

    Article  CAS  Google Scholar 

  21. Ouyang M, Sun J, Chien S, Wang Y (2008) Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci 105:14353–14358

    Article  CAS  Google Scholar 

  22. Nguyen AW, Daugherty PS (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23:355–360

    Article  CAS  Google Scholar 

  23. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  Google Scholar 

  24. Elder AD, Domin A, Kaminski Schierle GS, Lindon C, Pines J, Esposito A, Kaminski CF (2009) A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission. J R Soc Interface 6:S59–S81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Minshall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zimnicka, A.M., Chen, Z., Toth, P.T., Minshall, R.D. (2020). Live-Cell FRET Imaging of Phosphorylation-Dependent Caveolin-1 Switch. In: Blouin, C. (eds) Caveolae. Methods in Molecular Biology, vol 2169. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0732-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0732-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0731-2

  • Online ISBN: 978-1-0716-0732-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics