Skip to main content

pH-Induced Changes in Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered proteins are typically enriched in amino acids that confer a relatively high net charge to the protein, which is an important factor leading to the lack of a compact structure. There are many different approaches that can be used to experimentally confirm whether a protein is intrinsically disordered. One such approach takes advantage of the distinctive amino acid composition to test whether a protein is a genuine IDP. In particular, the conformation of the protein can be monitored at different pHs; as opposed to globular or ordered proteins, IDPs will typically gain structure under highly acidic or basic conditions. Here, we describe circular dichroism and fluorescence spectroscopic experimental approaches in which the conformation of proteins is monitored as pH is altered as a way of testing whether the protein behaves as an intrinsically disordered protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uversky VN, Gillespie JR, Fink AL (2000) Why are natively unfolded proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  PubMed  CAS  Google Scholar 

  2. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  3. Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes and macromolecular crowding. Protein J 28:305–325

    Article  PubMed  CAS  Google Scholar 

  4. Lise S, Jones DT (2005) Sequence patterns associated with disordered regions in proteins. Proteins 58:144–150

    Article  PubMed  CAS  Google Scholar 

  5. Harauz G, Ishiyama N, Hill CMD, Bates IR, Libich DS, Fares C (2004) Myelin basic protein – diverse conformational states of an intrinsically unstructured protein. Micron 35:503–542

    Article  PubMed  CAS  Google Scholar 

  6. Boggs JM (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci 63:1945–1961

    Article  PubMed  CAS  Google Scholar 

  7. Hansen JC, Lu X, Ross ED, Woody RW (2006) Intrinsic protein disorder, amino acid composition, and histone terminal domains. J Biol Chem 281:1853–1856

    Article  PubMed  CAS  Google Scholar 

  8. Hansen JC, Tse C, Wolffe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37:17637–17641

    Article  PubMed  CAS  Google Scholar 

  9. Munishkina LA, Fink AL, Uversky VN (2004) Conformational prerequisites for formation of amyloid fibrils from histones. J Mol Biol 342:1305–1324

    Article  PubMed  CAS  Google Scholar 

  10. Richardson LGL, Jelokhani-Niaraki M, Smith MD (2009) The acidic domains of the Toc159 chloroplast preprotein receptor family are intrinsically disordered protein domains. BMC Biochem 10:35

    Article  PubMed  Google Scholar 

  11. Uversky VN, Gillespie JR, Millet IS, Khodyakova AV, Vasiliev AM, Chernovskaya TV, Vasilenko RN, Kozlovskaya GD, Dolgikh DA, Fink AL, Doniach S, Abramov VM (1999) Natively unfolded human prothymosin a adopts partially folded collapsed conformation at acidic pH. Biochemistry 38:15009–15016

    Article  PubMed  CAS  Google Scholar 

  12. Berova N, Nakanishi K, Woody RW (eds) (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  13. Fasman GD (ed) (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York

    Google Scholar 

  14. Finkelstein A, Ptitsyn OB (2002) Protein physics. Academic, Amsterdam, pp 227–263

    Book  Google Scholar 

  15. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  16. Ross JBA, Laws WR, Wyssbrod HR (1992) Tyrosine fluorescence and phosphorescence from proteins and polypeptides. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol. 3: biochemical applications. Plenum, New York, pp 1–63

    Google Scholar 

  17. Boteva R, Zlateva T, Dorovska-Taran V, Visser AJWG, Tsanev R, Salvato B (1996) Dissociation equilibrium of human recombinant interferon γ. Biochemistry 35:14825–14830

    Article  PubMed  CAS  Google Scholar 

  18. Seerama N, Manning MC, Powers ME, Zhang J-X, Goldenberg DP, Woody RW (1999) Tyrosine, phenylalanine, and disulfide contributions to the circular dichroism of proteins: circular dichroism spectra of wild-type and mutant bovine pancreatic trypsin Inhibitor. Biochemistry 38:10814–10822

    Article  Google Scholar 

  19. Ivanova MV, Hoang T, McSorley FR, Krnac G, Smith MD, Jelokhani-Niaraki M (2010) A comparative study on conformation and ligand binding of the neuronal uncoupling proteins. Biochemistry 49:512–521

    Article  PubMed  CAS  Google Scholar 

  20. Pingoud A, Urbank C, Hoggett J, Jeltsch A (2002) Biochemical methods. Wiley-VCH, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smith, M.D., Jelokhani-Niaraki, M. (2012). pH-Induced Changes in Intrinsically Disordered Proteins. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics