Skip to main content

Mean Net Charge of Intrinsically Disordered Proteins: Experimental Determination of Protein Valence by Electrophoretic Mobility Measurements

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Under physiological conditions, intrinsically disordered proteins (IDPs) are unfolded, mainly because of their low hydrophobicity and the strong electrostatic repulsion between charged residues of the same sign within the protein. Softwares have been designed to facilitate the computation of the mean net charge of proteins (formally protein valence) from their amino acid sequences. Nevertheless, discrepancies between experimental and computed valence values for several proteins have been reported in the literature. Hence, experimental approaches are required to obtain accurate estimation of protein valence in solution. Moreover, ligand-induced disorder-to-order transition is involved in the folding of numerous IDPs. Some of the ligands are cations or anions, which, upon protein binding, decrease the mean net charge of the protein, favoring its folding via a charge reduction effect. An accurate determination of the mean net charge of protein in both its ligand-free intrinsically disordered state and in its folded, ligand-bound state allows one to estimate the number of ligands bound to the protein in the holo-state. Here, we describe an experimental protocol to determine the mean net charge of protein, from its electrophoretic mobility, its molecular mass and its hydrodynamic radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( {\mu_e} \) :

Electrophoretic mobility, cm2.V−1.s−1 or μm.cm.V−1.s−1 (SI: m2.V−1.s−1)

\( \zeta \) :

Zeta potential, V

z :

Valence or “mean net charge”

e :

Electronic charge, 1.602 × 10−19 coulombs, A.s

U :

Applied voltage, V, kg.m2.s−3.A−1

I :

Current intensity, A

\( {\varepsilon_0} \) :

Vacuum permittivity, 8.854 × 10−12C.V−1.m−1

\( {\varepsilon_r} \) :

Relative static permittivity (dielectric constant) of the solvent, 78.54.

\( \varepsilon \) :

Buffer permittivity, \( \varepsilon = {\varepsilon_r}{\varepsilon_0} \), C.V−1.m−1

\( {{f} \left/ {{{f_0}}} \right.} \) :

Translational frictional ratio of the protein, including shape and hydration parameters

\( f \) :

Frictional coefficient of the protein, g.s−1

\( {f_0} \) :

Frictional coefficient of an anhydrous sphere of the mass of the protein, g.s−1

R p :

Hydrodynamic radius of the protein, cm

R b :

Hydrodynamic radius of the buffer, cm

R 0 :

Radius of an anhydrous sphere of the mass of the protein, cm

V H :

Hydrodynamic volume, cm3

D t :

Translational diffusion coefficient, cm2.s−1

s :

Sedimentation coefficient obtained at the temperature of the experiment, Svedberg, 10−13s

\( \bar{\nu } \) :

Partial specific volume, cm3.g−1

\( {\eta_s} \) :

Viscosity of the solvent, Poise: g.cm−1.s−1

\( \rho \) :

Density of the solvent, g.cm−3

M :

Molecular mass, g.mol−1

T :

Absolute temperature, K

C :

Protein concentration, mol.L−1 (M)

\( \delta \) :

Time-averaged apparent hydration, \( {g_{{{{\rm{H}}_{{2}}}{\rm{O}}}}} \times g_{\rm{protein}}^{{ - 1}} \)

MCR:

Mean count rate

kcps:

Kilo-count per second

ZQF:

Zeta quality factor

FFR:

Fast field reversal

SFR:

Slow field reversal

DTS1060C:

Malvern electrophoretic mobility cell

DTS1230:

Malvern standard for electrophoretic mobility and conductivity

QELS:

Quasi-elastic light scattering

k B :

Boltzmann’s constant, erg.K−1; (K B: 1.38065 × 10−16 erg.K−1 with erg: g.cm2.s−2 = 10−7 J; 1.38065 × 10−23 J.K−1)

N A :

Avogadro’s number, molecules.mol−1

PALS:

Phase shift analysis light scattering

κ :

Debye length, Inverse screening length, m

ZEN1010:

Malvern electrophoretic mobility microcell

References

  1. Delgado AV, Gonzalez-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 77:1753–1805

    Article  CAS  Google Scholar 

  2. Abramson HA, Moyer LS, Gorin MH (1942) Electrophoresis of proteins and the chemistry of cell surfaces. Reinhold Publishing Coorporation, New York

    Google Scholar 

  3. Basak SK, Ladisch MR (1995) Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties. Anal Biochem 226:51–58

    Article  PubMed  CAS  Google Scholar 

  4. Sotomayor-Perez AC, Ladant D, Chenal A (2011) Calcium-induced folding of intrinsically disordered Repeat-in-Toxin (RTX) motifs via changes of protein charges and oligomerization states. J Biol Chem 286:16997–17004

    Google Scholar 

  5. Henry DC (1931) The cataphoresis of suspended particles. Part 1. The equation of cataphoresis. Proc R Soc Lond A 133:106–129

    Article  CAS  Google Scholar 

  6. Debye VP, Hückel E (1924) Bemerkungen zu einem Satze über die kataphorestische Wanderungsgeschwindingkeit suspendierter teilchen. Physikalische Zeitschrift 3

    Google Scholar 

  7. Smoluchowski M (1903) Przyczynek do teoryi endosmozy elekrycznej i niektorych zjawisk pokrewnych. Bull Acad Sci Cracovie

    Google Scholar 

  8. Wall S (2010) The history of electrokinetic phenomena. Curr Opin Colloid Interface Sci 15:119–124

    Article  CAS  Google Scholar 

  9. Gorin MH (1939) An equilibrium theory of ionic conductance. J Chem Phys 7:405–413

    Article  CAS  Google Scholar 

  10. Winzor DJ (2004) Determination of the net charge (valence) of a protein: a fundamental but elusive parameter. Anal Biochem 325:1–20

    Article  PubMed  CAS  Google Scholar 

  11. Adamson NJ, Reynolds EC (1997) Rules relating electrophoretic mobility, charge and molecular size of peptides and proteins. J Chromatogr 699:133–147

    Article  CAS  Google Scholar 

  12. Issaq HJ, Janini GM, Atamna IZ, Muschik GM, Lukszo J (1992) Capillary electrophoresis separation of small peptides: effect of pH, buffer additives, and temperature. J Liq Chrom Relat Tech 15:1129–1142

    Article  CAS  Google Scholar 

  13. Walbroehl Y, Jorgenson JW (1989) Capillary zone electrophoresis for the determination of electrophoretic mobilities and diffusion coefficients of proteins. J Microcolumn Sep 1:41–45

    Article  CAS  Google Scholar 

  14. Velick SF (1949) The interaction of enzymes with small ions. I. An electrophoretic and equilibrium analysis of ldolase in phosphate and acetate buffers. J Phys Colloid Chem 53:135–149

    Article  PubMed  CAS  Google Scholar 

  15. Longsworth LG (1941) The influence of pH on the mobility and diffusion of ovalbumin. Ann NY Acad Sci 41:267–285

    Article  CAS  Google Scholar 

  16. Ivory CF (1990) Electrophoresis of proteins: batch and continuous methods. In: Flickinger M, Drew S (eds) The encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparations. Wiley, Chapter 9

    Google Scholar 

  17. Rickard EC, Strohl MM, Nielsen RG (1991) Correlation of electrophoretic mobilities from capillary electrophoresis with physicochemical properties of proteins and peptides. Anal Biochem 197:197–207

    Article  PubMed  CAS  Google Scholar 

  18. Karst JC, Sotomayor Perez AC, Ladant D, Chenal A (2012) Estimation of intrinsically disordered protein shape and time-averaged apparent hydration in native conditions by a combination of hydrodynamic methods. In: Uversky V, Dunker AK (eds) Intrinsically Disordered Proteins: Volume I. Experimental Techniques

    Google Scholar 

  19. Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656

    Article  PubMed  CAS  Google Scholar 

  20. Chenal A, Guijarro JI, Raynal B, Delepierre M, Ladant D (2009) RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284:1781–1789

    Article  PubMed  CAS  Google Scholar 

  21. Karst JC, Sotomayor Perez AC, Guijarro JI, Raynal B, Chenal A, Ladant D (2010) Calmodulin-induced conformational and hydrodynamic changes in the catalytic domain of Bordetella pertussis adenylate cyclase toxin. Biochemistry 49:318–328

    Article  PubMed  CAS  Google Scholar 

  22. Sotomayor Perez AC, Karst JC, Davi M, Guijarro JI, Ladant D, Chenal A (2010) Characterization of the regions involved in the calcium-induced folding of the intrinsically disordered RTX motifs from the Bordetella pertussis adenylate cyclase toxin. J Mol Biol 397:534–549

    Article  PubMed  Google Scholar 

  23. Rodbard D, Chrambach A (1971) Estimation of molecular radius, free mobility, and valence using polyacylamide gel electrophoresis. Anal Biochem 40:95–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Institut Pasteur (Grant PTR374), the Centre National de la Recherche Scientifique (CNRS UMR 3528), and the Agence Nationale de la Recherche, programme Jeunes Chercheurs (ANR, grant ANR-09-JCJC-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Chenal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sotomayor-Pérez, A.C., Karst, J.C., Ladant, D., Chenal, A. (2012). Mean Net Charge of Intrinsically Disordered Proteins: Experimental Determination of Protein Valence by Electrophoretic Mobility Measurements. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics