Skip to main content

Intramuscular DNA Vaccination Protocols Mediated by Electric Fields

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Vaccination is historically one of the most important methods for preventing infectious diseases in humans and animals. New insights in the biology of the immune system allow a more rational design of vaccines, and new vaccination strategies are emerging. DNA vaccines have been proposed as a promising approach for introducing foreign antigens into the host for inducing protective immunity against infectious and cancer diseases. Nevertheless, because of their poor immunogenicity, plasmid DNA vaccination strategies need further implementations. Recent data suggest electrotransfer as a useful tool to improve DNA-based vaccination protocols, being able to stimulate both the humoral and cellular immune responses. In preclinical trials, gene electrotransfer is successfully used in prime-boost combination protocols and its tolerability and safety has been demonstrated also in Phase I clinical trials. In this chapter, we report a short comment supporting electrotransfer as an effective strategy to improve DNA-based vaccination protocols and describe the vaccination procedures by plasmid DNA in combination with electrotransfer and hyaluronidase pretreatment in use in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells DJ (2006) Viral and non-viral methods for gene transfer into skeletal muscle. Curr Opin Drug Discov Dev 9:163–168

    CAS  Google Scholar 

  2. Zhu J, Martinez J, Huang X et al (2007) Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 109:619–625

    Article  CAS  PubMed  Google Scholar 

  3. Molnar-Kimber KL, Sterman DH, Chang M et al (1998) Impact of pre-existing and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther 9:2121–2133

    Article  CAS  PubMed  Google Scholar 

  4. Cohen P (2006) Immunity’s yin and yang. A successful vaccine must first avoid being eliminated by pre-existing immunity before it can promote a protective immune response. IAVI Rep 10:1–5

    Google Scholar 

  5. Ellis RW, Gerety RJ (1990) Key issues in the selection of an expression system for vaccine antigens. J Med Virol 31:54–58

    Article  CAS  PubMed  Google Scholar 

  6. Touihri L, Ahmed SB, Chtourou Y et al (2012) Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs. Virol J 9:319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li J, Jiang Y, Zhao S et al (2012) Protective efficacy of an H5N1 DNA vaccine against challenge with a lethal H5N1 virus in quail. Avian Dis 56:937–939

    Article  PubMed  Google Scholar 

  8. Fredriksen AB, Sandlie I, Bogen B (2012) Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells. Front Oncol 2:154

    Article  PubMed Central  PubMed  Google Scholar 

  9. Signori E, Iurescia S, Massi E et al (2010) DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother 59:1583–1591

    Article  CAS  PubMed  Google Scholar 

  10. Cho HI, Celis E (2012) Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol Immunother 61:343–351

    Article  CAS  PubMed  Google Scholar 

  11. Powell K (2004) DNA vaccines: back in the saddle again? Nat Biotechnol 22:799–801

    Article  CAS  PubMed  Google Scholar 

  12. Lorenzen N, Lapatra SE (2005) DNA vaccines for aquacultured fish. Rev Sci Tech 24:201–213

    CAS  PubMed  Google Scholar 

  13. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time. Nat Rev Genet 9:776–788

    Google Scholar 

  14. Chiarella P, Massi E, De Robertis M et al (2007) Adjuvants in vaccines and for immunisation: current trends. Expert Opin Biol Ther 7:1551–1562

    Article  CAS  PubMed  Google Scholar 

  15. Chiarella P, Massi E, De Robertis M et al (2008) Strategies for effective naked-DNA vaccination against infectious diseases. Recent Pat Antiinfect Drug Discov 3:93–101

    Article  CAS  PubMed  Google Scholar 

  16. Neumann E, Schaefer-Ridder M, Wang Y et al (1982) Gene transfer into mouse lymphoma cells by EP in high electric fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  17. Okino M, Mohri H (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn J Cancer Res 78:1319–321

    CAS  PubMed  Google Scholar 

  18. Titomirov AV, Sukharev S, Kistanova E (1991) In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta 1088:131–34

    Article  CAS  PubMed  Google Scholar 

  19. Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43:167–176

    Article  CAS  PubMed  Google Scholar 

  20. McMahon JM, Signori E, Wells KE et al (2001) Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase—increased expression with reduced muscle damage. Gene Ther 8:1264–1270

    Article  CAS  PubMed  Google Scholar 

  21. Rosati M, Valentin A, Jalah R et al (2008) Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine 26:5223–5229

    Article  CAS  PubMed  Google Scholar 

  22. Hirao LA, Wu L, Khan AS et al (2008) Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 26:3112–3120

    Article  CAS  PubMed  Google Scholar 

  23. Otten G, Schaefer M, Doe B et al (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine 22:2489–2493

    Article  CAS  PubMed  Google Scholar 

  24. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  25. Mathiesen I (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 6:508–514

    Article  CAS  PubMed  Google Scholar 

  26. Babiuk S, Baca-Estrada ME, Foldvari M et al (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J Biotechnol 110:1–10

    Article  CAS  PubMed  Google Scholar 

  27. Widera G, Austin M, Rabussay D et al (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635–4640

    CAS  PubMed  Google Scholar 

  28. Chiarella P, Massi E, De Robertis M et al (2008) Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 8:1645–1657

    Article  CAS  PubMed  Google Scholar 

  29. Bergqvist S (1950) Increased reaction to BCG vaccination caused by hyaluronidase. Nord Med 43:955–956

    CAS  PubMed  Google Scholar 

  30. Salvioli G, Degli Esposti A, Dina MA (1952) Experimental studies on Salvioli’s diffusing vaccine; study of histobiochemical reactions in vaccination with killed Koch’s bacilli with and without hyaluronidase. Boll Ist Sieroter Milan 31:210–225

    CAS  PubMed  Google Scholar 

  31. Tozuka TN, Akira Y, Yaajima T et al (1954) The enhancement of the effect of B.C.G. vaccination with hyaluronidase. J Shinshu Univ 4:39–71

    Google Scholar 

  32. Jedrzejas MJ, Stern R (2005) Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis. Proteins 61:227–238

    Article  CAS  PubMed  Google Scholar 

  33. Stern R, Jedrzejas MJ (2006) Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev 106:818–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kreil G (1995) Hyaluronidases: a group of neglected enzymes. Protein Sci 4:1666–1669

    Article  CAS  PubMed  Google Scholar 

  35. Wiegand R, Brown J (2010) Hyaluronidase for the management of dextrose extravasation. Am J Emerg Med 2:257

    Google Scholar 

  36. Rowlett J (2012) Extravasation of contrast media managed with recombinant human hyaluronidase. Am J Emerg Med 9:2102

    Google Scholar 

  37. Dubensky TW, Campbell BA, Villareal LP (1984) Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proc Natl Acad Sci U S A 81:7529–7533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Favre D, Cherel Y, Provost N et al (2000) Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle. Gene Ther 7:1417–1420

    Article  CAS  PubMed  Google Scholar 

  39. Chiarella P, Fazio VM, Signori E (2010) Application of electroporation in DNA vaccination protocols. Curr Gene Ther 10:281–6

    Article  CAS  PubMed  Google Scholar 

  40. Chiarella P, De Santis S, Fazio VM, Signori E (2013) Hyaluronidase contributes to the early inflammatory events induced by electrotransfer on the mouse skeletal muscle. Hum Gene Ther 24:406–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the Animal Facility at the “Sacro Cuore” Catholic University of Rome for their assistance in animal care.

E.S. thanks the COST Action TD1104 network-EP4Bio2Med Consortium (http://www.electroporation.net).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Chiarella, P., Signori, E. (2014). Intramuscular DNA Vaccination Protocols Mediated by Electric Fields. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics