Skip to main content

Isolation, Polarization, and Expansion of CD4+ Helper T Cell Lines and Clones Using Magnetic Beads

  • Protocol
  • First Online:
Systemic Lupus Erythematosus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1134))

Abstract

Autoreactive CD4+ helper T cells specific for a range of nucleoprotein-derived autoantigens are an important feature of systemic lupus erythematosus, driving B cell differentiation and autoantibody production and contributing to the inflammatory lesions caused by immune complex deposition. Several peptide epitopes from nucleoprotein antigens have been identified and offer a means selectively to manipulate T cell responses by skewing toward a profile of cytokines that is less pro-inflammatory.

Antigen-specific T cell lines and clones can be useful in the study of helper T cell subsets because their life span is prolonged and many individual cells can be generated, allowing particular phenotypes to be studied in detail. Magnetic beads offer a robust and convenient method for the isolation, polarization, and expansion of T cells, which can be adapted for a broad range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358: 929–939

    Article  CAS  PubMed  Google Scholar 

  2. Clark DN, Markham JL, Sloan CS, Poole BD (2012) Cytokine inhibition as a strategy for treating systemic lupus erythematosus. Clin Immunol 148:335–343

    Article  PubMed  Google Scholar 

  3. Coffman RL, Lebman DA, Rothman P (1993) Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol 54: 229–270

    Article  CAS  PubMed  Google Scholar 

  4. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  CAS  PubMed  Google Scholar 

  6. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  7. Kaliyaperumal A, Michaels MA, Datta SK (1999) Antigen-specific therapy of murine lupus nephritis using nucleosomal peptides: tolerance spreading impairs pathogenic function of autoimmune T and B cells. J Immunol 162:5775–5783

    CAS  PubMed  Google Scholar 

  8. Kaliyaperumal A, Michaels MA, Datta SK (2002) Naturally processed chromatin peptides reveal a major autoepitope that primes pathogenic T and B cells of lupus. J Immunol 168:2530–2537

    CAS  PubMed  Google Scholar 

  9. Kang HK, Michaels MA, Berner BR, Datta SK (2005) Very low-dose tolerance with nucleosomal peptides controls lupus and induces potent regulatory T cell subsets. J Immunol 174:3247–3255

    CAS  PubMed  Google Scholar 

  10. Monneaux F, Briand JP, Muller S (2000) B and T cell immune response to small nuclear ribonucleoprotein particles in lupus mice: autoreactive CD4(+) T cells recognize a T cell epitope located within the RNP80 motif of the 70K protein. Eur J Immunol 30:2191–2200

    Article  CAS  PubMed  Google Scholar 

  11. Wu HY, Ward FJ, Staines NA (2002) Histone peptide-induced nasal tolerance: suppression of murine lupus. J Immunol 169:1126–1134

    CAS  PubMed  Google Scholar 

  12. Muller S (2012) Synthetic peptides as tools for diagnosis and therapeutic strategies to treat systemic lupus erythematous. Autoimmun Rev 11:799–800

    Article  CAS  PubMed  Google Scholar 

  13. Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB, June CH (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159:5921–5930

    CAS  PubMed  Google Scholar 

  14. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Dahal, L.N., Barker, R.N., Ward, F.J. (2014). Isolation, Polarization, and Expansion of CD4+ Helper T Cell Lines and Clones Using Magnetic Beads. In: Eggleton, P., Ward, F. (eds) Systemic Lupus Erythematosus. Methods in Molecular Biology, vol 1134. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0326-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0326-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0325-2

  • Online ISBN: 978-1-4939-0326-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics