Skip to main content

Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-arming Technology

  • Protocol
  • First Online:
Yeast Metabolic Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1152))

Abstract

The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of proteins/peptides library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated proteins/peptides library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous (1997) Arming yeast with cell-surface catalysts. Chem Eng News 75:32

    Google Scholar 

  2. Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  Google Scholar 

  3. Ueda M, Tanaka A (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    Article  CAS  Google Scholar 

  4. Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  Google Scholar 

  5. Kuroda K, Ueda M (2011) Molecular design of the microbial cell surface toward the recovery of metal ions. Curr Opin Biotechnol 22:427–433

    Article  CAS  Google Scholar 

  6. Kuroda K, Ueda M (2011) Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9

    Article  CAS  Google Scholar 

  7. Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10

    Article  CAS  Google Scholar 

  8. Chen W, Georgiou G (2002) Cell-Surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol Bioeng 79:496–503

    Article  CAS  Google Scholar 

  9. Yeung YA, Wittrup KD (2002) Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol Prog 18:212–220

    Article  CAS  Google Scholar 

  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557

    Article  CAS  Google Scholar 

  11. Fukuda T, Kato-Murai M, Suye S, Ueda M (2007) Development of high-throughput screening system by single-cell reaction using microchamber array chip. J Biosci Bioeng 104:241–243

    Article  CAS  Google Scholar 

  12. Aoki W, Yoshino Y, Morisaka H, Tsunetomo K, Koyo H, Kamiya S, Kawata N, Kuroda K, Ueda M (2011) High-throughput screening of improved protease inhibitors using a yeast cell surface display system and a yeast cell chip. J Biosci Bioeng 111:16–18

    Article  CAS  Google Scholar 

  13. Fukuda T, Kato-Murai M, Kadonosono T, Sahara H, Hata Y, Suye S, Ueda M (2007) Enhancement of substrate recognition ability by combinatorial mutation of β-glucosidase displayed on the yeast cell surface. Appl Microbiol Biotechnol 76:1027–1033

    Google Scholar 

  14. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  CAS  Google Scholar 

  15. Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  Google Scholar 

  16. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  Google Scholar 

  17. Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Kawaguchi T, Arai M, Tanaka A (1997) Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503

    Article  CAS  Google Scholar 

  18. Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    Google Scholar 

  19. Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    Article  CAS  Google Scholar 

  20. Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  Google Scholar 

  21. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  Google Scholar 

  22. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  Google Scholar 

  23. Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  24. Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  Google Scholar 

  25. Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  Google Scholar 

  26. Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  Google Scholar 

  27. Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, Shibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y (2008) Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl Microbiol Biotechnol 79:51–60

    Google Scholar 

  28. Inaba C, Higuchi S, Morisaka H, Kuroda K, Ueda M (2010) Synthesis of functional dipeptide carnosine from nonprotected amino acids using carnosinase-displaying yeast cells. Appl Microbiol Biotechnol 86:1895–1902

    Article  CAS  Google Scholar 

  29. Yasui M, Shibasaki S, Kuroda K, Ueda M, Kawada N, Nishikawa J, Nishihara T, Tanaka A (2002) An arming yeast with the ability to entrap fluorescent 17β-estradiol on the cell surface. Appl Microbiol Biotechnol 59:329–331

    Google Scholar 

  30. Takayama K, Suye S, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A (2006) Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939–943

    Article  CAS  Google Scholar 

  31. Fushimi T, Miura N, Shintani H, Tsunoda H, Kuroda K, Ueda M (2012) Mutant firefly luciferases with improved specific activity and dATP discrimination constructed by yeast cell surface engineering. Appl Microbiol Biotechnol 97:4003–4011

    Google Scholar 

  32. Kuroda K, Nishitani T, Ueda M (2012) Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–159

    Article  CAS  Google Scholar 

  33. Nakanishi A, Bae J, Kuroda K, Ueda M (2012) Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering. AMB Express 2:56

    Article  CAS  Google Scholar 

  34. Fukuda T, Shiraga S, Kato M, Suye S, Ueda M (2006) Construction of a cultivation system of a yeast single cell in a cell chip microchamber. Biotechnol Prog 22:944–948

    Article  CAS  Google Scholar 

  35. Isogawa D, Fukuda T, Kuroda K, Kusaoke H, Kimoto H, Suye S, Ueda M (2009) Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library. Appl Microbiol Biotechnol 85:95–104

    Article  CAS  Google Scholar 

  36. Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    CAS  Google Scholar 

  37. Kuroda K, Matsui K, Higuchi S, Kotaka A, Sahara H, Hata Y, Ueda M (2009) Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl Microbiol Biotechnol 82:713–719

    Article  CAS  Google Scholar 

  38. Brenner C, Fuller RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci USA 89:922–926

    Google Scholar 

  39. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  Google Scholar 

  40. Macreadie IG, Horaitis O, Verkuylen AJ, Savin KW (1991) Improved shuttle vectors for cloning and high-level Cu2+-mediated expression of foreign genes in yeast. Gene 104:107–111

    Article  CAS  Google Scholar 

  41. Mizuno K, Nakamura T, Ohshima T, Tanaka S, Matsuo H (1989) Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 159:305–311

    Google Scholar 

  42. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27

    CAS  Google Scholar 

  43. Washida M, Takahashi S, Ueda M, Tanaka A (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl Microbiol Biotechnol 56:681–686

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuroda, K., Ueda, M. (2014). Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-arming Technology. In: Mapelli, V. (eds) Yeast Metabolic Engineering. Methods in Molecular Biology, vol 1152. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0563-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0563-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0562-1

  • Online ISBN: 978-1-4939-0563-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics