Skip to main content

Gene Polymorphisms in Female Reproduction

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

This chapter presents an overview of the gene polymorphisms underlying the functions of ovarian receptors and their clinical implications in the female fecundity. A selection of genetic studies revealing significant associations between receptor polymorphisms, gene mutations, and some pathological conditions (i.e., female infertility, premature ovarian failure, polycystic ovary syndrome, endometriosis) are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nordhoff V, Gromoll J, Simoni M (1999) Constitutively active mutations of G protein-coupled receptors: the case of the human luteinizing hormone and follicle-stimulating hormone receptors. Arch Med Res 30(6):501–509

    PubMed  CAS  Google Scholar 

  2. Simoni M, Tempfer CB, Destenaves B, Fauser BCJM (2008) Functional genetic polymorphisms and female reproductive disorders: part I: polycystic ovary syndrome and ovarian response. Hum Reprod Update 14(5):459–484, Ott

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229, Giu 21

    PubMed  CAS  Google Scholar 

  4. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265, Gen 15

    PubMed  CAS  Google Scholar 

  5. Barrett JC (2009) Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc 2009(10):pdb.ip71, Ott

    Google Scholar 

  6. Simoni M, Gromoll J, Höppner W, Kamischke A, Krafft T, Stähle D et al (1999) Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab 84(2):751–755

    PubMed  CAS  Google Scholar 

  7. Simoni M, Nieschlag E, Gromoll J (2002) Isoforms and single nucleotide polymorphisms of the FSH receptor gene: implications for human reproduction. Hum Reprod Update 8(5):413–421

    PubMed  CAS  Google Scholar 

  8. Wunsch A, Sonntag B, Simoni M (2007) Polymorphism of the FSH receptor and ovarian response to FSH. Ann Endocrinol (Paris) 68(2–3):160–166, Giu

    CAS  Google Scholar 

  9. Xita N, Chatzikyriakidou A, Stavrou I, Zois C, Georgiou I, Tsatsoulis A (2010) The (TTTA)n polymorphism of aromatase (CYP19) gene is associated with age at menarche. Hum Reprod 25(12):3129–3133, Dic

    PubMed  CAS  Google Scholar 

  10. Loutradis D, Theofanakis C, Anagnostou E, Mavrogianni D, Partsinevelos GA (2011) Genetic profile of SNP(s) and ovulation induction. Curr Pharm Biotechnol 13(3):417–425, Giu 9 [citato 2011 Giu 17]; http://www.ncbi.nlm.nih.gov/pubmed/21657995

    Google Scholar 

  11. Twigt JM, Hammiche F, Sinclair KD, Beckers NG, Visser JA, Lindemans J et al (2011) Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab 96(2): E322–E329

    PubMed  CAS  Google Scholar 

  12. Hodgen GD (1982) The dominant ovarian follicle. Fertil Steril 38(3):281–300, Set

    PubMed  CAS  Google Scholar 

  13. Baird DT (1987) A model for follicular selection and ovulation: lessons from superovulation. J Steroid Biochem 27(1–3):15–23

    PubMed  CAS  Google Scholar 

  14. Perez Mayorga M, Gromoll J, Behre HM, Gassner C, Nieschlag E, Simoni M (2000) Ovarian response to follicle-stimulating hormone (FSH) stimulation depends on the FSH receptor genotype. J Clin Endocrinol Metab 85(9):3365–3369, Set

    PubMed  CAS  Google Scholar 

  15. Zheng W, Magid M, Kramer E, Chen Y (1996) Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 148(1):47–53, Gen 1

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Greb RR, Grieshaber K, Gromoll J, Sonntag B, Nieschlag E, Kiesel L et al (2005) A common single nucleotide polymorphism in exon 10 of the human follicle stimulating hormone receptor is a major determinant of length and hormonal dynamics of the menstrual cycle. J Clin Endocrinol Metab 90(8):4866–4872, Ago

    PubMed  CAS  Google Scholar 

  17. Gromoll J, Simoni M (2005) Genetic complexity of FSH receptor function. Trends Endocrinol Metab 16(8):368–373, Ott

    PubMed  CAS  Google Scholar 

  18. Kuijper EAM, Blankenstein MA, Luttikhof LJ, Roek SJM, Overbeek A, Hompes PG et al (2011) Frequency distribution of polymorphisms in the FSH receptor gene in infertility patients of different ethnicity. Reprod Biomed Online 22(Suppl 1):S60–S65

    PubMed  Google Scholar 

  19. Loutradis D, Vlismas A, Drakakis P, Antsaklis A (2008) Pharmacogenetics in ovarian stimulation – current concepts. Ann N Y Acad Sci 1127:10–19

    PubMed  CAS  Google Scholar 

  20. Morón FJ, Ruiz A (2010) Pharmacogenetics of controlled ovarian hyperstimulation: time to corroborate the clinical utility of FSH receptor genetic markers. Pharmacogenomics 11(11):1613–1618

    PubMed  Google Scholar 

  21. Yao Y, Ma C, Tang H, Hu Y (2011) Influence of follicle-stimulating hormone receptor (FSHR) Ser680Asn polymorphism on ovarian function and in-vitro fertilization outcome: a meta-analysis. Mol Genet Metab 103(4):388–393

    PubMed  CAS  Google Scholar 

  22. Behre HM, Greb RR, Mempel A, Sonntag B, Kiesel L, Kaltwasser P et al (2005) Significance of a common single nucleotide polymorphism in exon 10 of the follicle-stimulating hormone (FSH) receptor gene for the ovarian response to FSH: a pharmacogenetic approach to controlled ovarian hyperstimulation. Pharmacogenet Genomics 15(7):451–456, Lug

    PubMed  CAS  Google Scholar 

  23. Jun JK, Yoon JS, Ku S, Choi YM, Hwang KR, Park SY et al (2006) Follicle-stimulating hormone receptor gene polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET. J Hum Genet 51(8):665–670

    PubMed  CAS  Google Scholar 

  24. Klinkert ER, te Velde ER, Weima S, van Zandvoort PM, Hanssen RGJM, Nilsson PR et al (2006) FSH receptor genotype is associated with pregnancy but not with ovarian response in IVF. Reprod Biomed Online 13(5):687–695

    PubMed  CAS  Google Scholar 

  25. Achrekar SK, Modi DN, Desai SK, Mangoli VS, Mangoli RV, Mahale SD (2009) Poor ovarian response to gonadotrophin stimulation is associated with FSH receptor polymorphism. Reprod Biomed Online 18(4):509–515

    PubMed  CAS  Google Scholar 

  26. Desai SS, Achrekar SK, Pathak BR, Desai SK, Mangoli VS, Mangoli RV et al (2011) Follicle-stimulating hormone receptor polymorphism (G−29A) is associated with altered level of receptor expression in Granulosa cells. J Clin Endocrinol Metab 96(9):2805–2812, Lug 13 [citato 2011 Lug 22]; http://jcem.endojournals.org/content/early/2011/07/07/jc.2011-1064.abstract

    PubMed  CAS  Google Scholar 

  27. Ascoli M, Fanelli F, Segaloff DL (2002) The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev 23(2):141–174

    PubMed  CAS  Google Scholar 

  28. Piersma D, Berns EMJJ, Verhoef-Post M, Uitterlinden AG, Braakman I, Pols HAP et al (2006) A common polymorphism renders the luteinizing hormone receptor protein more active by improving signal peptide function and predicts adverse outcome in breast cancer patients. J Clin Endocrinol Metab 91(4):1470–1476

    PubMed  CAS  Google Scholar 

  29. Piersma D, Verhoef-Post M, Look MP, Uitterlinden AG, Pols HAP, Berns EMJJ et al (2007) Polymorphic variations in exon 10 of the luteinizing hormone receptor: functional consequences and associations with breast cancer. Mol Cell Endocrinol 30(276(1–2)): 63–70, Set

    Google Scholar 

  30. Powell BL, Piersma D, Kevenaar ME, van Staveren IL, Themmen APN, Iacopetta BJ et al (2003) Luteinizing hormone signaling and breast cancer: polymorphisms and age of onset. J Clin Endocrinol Metab 88(4):1653–1657

    PubMed  CAS  Google Scholar 

  31. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140

    PubMed  CAS  Google Scholar 

  32. Kerkelä E, Skottman H, Friden B, Bjuresten K, Kere J, Hovatta O (2007) Exclusion of coding-region mutations in luteinizing hormone and follicle-stimulating hormone receptor genes as the cause of ovarian hyperstimulation syndrome. Fertil Steril 87(3):603–606

    PubMed  Google Scholar 

  33. Hillier SG, Whitelaw PF, Smyth CD (1994) Follicular oestrogen synthesis: the ‘two-cell, two-gonadotrophin’ model revisited. Mol Cell Endocrinol 100(1–2):51–54

    PubMed  CAS  Google Scholar 

  34. Pettersson K, Ding YQ, Huhtaniemi I (1992) An immunologically anomalous luteinizing hormone variant in a healthy woman. J Clin Endocrinol Metab 74(1):164–171, Gen

    PubMed  CAS  Google Scholar 

  35. Nilsson C, Jiang M, Pettersson K, Iitiä A, Mäkelä M, Simonsen H et al (1998) Determination of a common genetic variant of luteinizing hormone using DNA hybridization and immunoassays. Clin Endocrinol (Oxf) 49(3):369–376, Set

    CAS  Google Scholar 

  36. Haavisto AM, Pettersson K, Bergendahl M, Virkamäki A, Huhtaniemi I (1995) Occurrence and biological properties of a common genetic variant of luteinizing hormone. J Clin Endocrinol Metab 80(4):1257–1263

    PubMed  CAS  Google Scholar 

  37. Suganuma N, Furui K, Kikkawa F, Tomoda Y, Furuhashi M (1996) Effects of the mutations (Trp8 → Arg and Ile15 → Thr) in human luteinizing hormone (LH) beta-subunit on LH bioactivity in vitro and in vivo. Endocrinology 137(3):831–838

    PubMed  CAS  Google Scholar 

  38. Jiang M, Pakarinen P, Zhang FP, El-Hefnawy T, Koskimies P, Pettersson K et al (1999) A common polymorphic allele of the human luteinizing hormone beta-subunit gene: additional mutations and differential function of the promoter sequence. Hum Mol Genet 8(11):2037–2046, Ott

    PubMed  CAS  Google Scholar 

  39. Furui K, Suganuma N, Tsukahara S, Asada Y, Kikkawa F, Tanaka M et al (1994) Identification of two point mutations in the gene coding luteinizing hormone (LH) beta-subunit, associated with immunologically anomalous LH variants. J Clin Endocrinol Metab 78(1):107–113, Gen 1

    PubMed  CAS  Google Scholar 

  40. Ramanujam LN, Liao WX, Roy AC, Loganath A, Goh HH, Ng SC (1999) Association of molecular variants of luteinizing hormone with menstrual disorders. Clin Endocrinol 51(2):243–246

    CAS  Google Scholar 

  41. Alviggi C, Clarizia R, Pettersson K, Mollo A, Humaidan P, Strina I et al (2009) Suboptimal response to GnRHa long protocol is associated with a common LH polymorphism. Reprod Biomed Online 18(1):9–14, Gen

    PubMed  CAS  Google Scholar 

  42. Gazvani R, Pakarinen P, Fowler P, Logan S, Huhtaniemi I (2002) Lack of association of the common immunologically anomalous LH with endometriosis. Hum Reprod 17(6):1532–1534, Giu 1

    PubMed  CAS  Google Scholar 

  43. Akhmedkhanov A, Toniolo P, Zeleniuch-Jacquotte A, Pettersson KS, Huhtaniemi IT (2001) Luteinizing hormone, its beta-subunit variant, and epithelial ovarian cancer: the gonadotropin hypothesis revisited. Am J Epidemiol 154(1):43–49, Lug 1

    PubMed  CAS  Google Scholar 

  44. Pelletier G, El-Alfy M (2000) Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab 85(12):4835–4840, Dic

    PubMed  CAS  Google Scholar 

  45. Britt KL, Findlay JK (2002) Estrogen actions in the ovary revisited. J Endocrinol 175(2):269–276

    PubMed  CAS  Google Scholar 

  46. Georgiou I, Konstantelli M, Syrrou M, Messinis IE, Lolis DE (1997) Oestrogen receptor gene polymorphisms and ovarian stimulation for in-vitro fertilization. Hum Reprod 12(7):1430–1433, Lug

    PubMed  CAS  Google Scholar 

  47. Altmäe S, Haller K, Peters M, Hovatta O, Stavreus-Evers A, Karro H et al (2007) Allelic estrogen receptor 1 (ESR1) gene variants predict the outcome of ovarian stimulation in in vitro fertilization. Mol Hum Reprod 13(8):521–526, Ago

    PubMed  Google Scholar 

  48. de Castro F, Morón FJ, Montoro L, Galán JJ, Hernández DP, Padilla ES et al (2004) Human controlled ovarian hyperstimulation outcome is a polygenic trait. Pharmacogenetics 14(5):285–293, Mag

    PubMed  Google Scholar 

  49. Sundarrajan C, Liao W, Roy AC, Ng SC (1999) Association of oestrogen receptor gene polymorphisms with outcome of ovarian stimulation in patients undergoing IVF. Mol Hum Reprod 5(9):797–802, Set

    PubMed  CAS  Google Scholar 

  50. Silva IV, Rezende LCD, Lanes SP, Souza LS, Madeira KP, Cerri MF et al (2010) Evaluation of PvuII and XbaI polymorphisms in the estrogen receptor alpha gene (ESR1) in relation to menstrual cycle timing and reproductive parameters in post-menopausal women. Maturitas 67(4):363–367, Dic

    PubMed  CAS  Google Scholar 

  51. Peter I, Shearman A, Zucker D, Schmid C, Demissie S, Cupples L et al (2005) Variation in estrogen-related genes and cross-sectional and longitudinal blood pressure in the Framingham Heart Study. J Hypertens 23(12):2193–2200

    PubMed  CAS  Google Scholar 

  52. Corbo R, Ulizzi L, Piombo L, Martinez-Labarga C, De Stefano G, Scacchi R (2007) Estrogen receptor alpha polymorphisms and fertility in populations with different reproductive patterns. Mol Hum Reprod 13(8):537–540

    PubMed  CAS  Google Scholar 

  53. Molvarec A, Ver A, Fekete A, Rosta K, Derzbach L, Derzsy Z et al (2007) Association between estrogen receptor [alpha] (ESR1) gene polymorphisms and severe preeclampsia. Hypertens Res 30(3):205–211

    PubMed  CAS  Google Scholar 

  54. Herrington DM, Howard TD, Hawkins GA, Reboussin DM, Xu J, Zheng SL et al (2002) Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med 346(13):967–974

    PubMed  CAS  Google Scholar 

  55. Kim S, Pyun J, Kang H, Kim J, Cha DH, Kwack K (2011) Epistasis between CYP19A1 and ESR1 polymorphisms is associated with premature ovarian failure. Fertil Steril 95(1):353–356, Gen

    PubMed  CAS  Google Scholar 

  56. George L, Mills JL, Johansson ALV, Nordmark A, Olander B, Granath F et al (2002) Plasma folate levels and risk of spontaneous abortion. JAMA 288(15):1867–1873, Ott 16

    PubMed  CAS  Google Scholar 

  57. Mooij PN, Wouters MG, Thomas CM, Doesburg WH, Eskes TK (1992) Disturbed reproductive performance in extreme folic acid deficient golden hamsters. Eur J Obstet Gynecol Reprod Biol 43(1):71–75, Gen 9

    PubMed  CAS  Google Scholar 

  58. Boxmeer JC, Macklon NS, Lindemans J, Beckers NGM, Eijkemans MJC, Laven JSE et al (2009) IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid. Hum Reprod 24(5):1059–1066, Mag

    PubMed  CAS  Google Scholar 

  59. Ebisch IMW, Peters WHM, Thomas CMG, Wetzels AMM, Peer PGM, Steegers-Theunissen RPM (2006) Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum Reprod 21(7):1725–1733, Lug

    PubMed  CAS  Google Scholar 

  60. Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL (2007) Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 13(3):225–238, Giu

    PubMed  CAS  Google Scholar 

  61. Hecht S, Pavlik R, Lohse P, Noss U, Friese K, Thaler CJ (2009) Common 677C → T mutation of the 5,10-methylenetetrahydrofolate reductase gene affects follicular estradiol synthesis. Fertil Steril 91(1):56–61, Gen

    PubMed  CAS  Google Scholar 

  62. Rosen MP, Shen S, McCulloch CE, Rinaudo PF, Cedars MI, Dobson AT (2007) Methylenetetrahydrofolate reductase (MTHFR) is associated with ovarian follicular activity. Fertil Steril 88(3):632–638, Set

    PubMed  CAS  Google Scholar 

  63. Stern LL, Mason JB, Selhub J, Choi SW (2000) Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev 9(8):849–853, Ago

    PubMed  CAS  Google Scholar 

  64. Friso S, Choi S, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 99(8):5606–5611

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Frosst P, Blom H, Milos R, Goyette P, Sheppard C, Matthews R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113, Mag

    PubMed  CAS  Google Scholar 

  66. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699, Mag 17

    PubMed  CAS  Google Scholar 

  67. Szymański W, Kazdepka-Ziemińska A (2003) [Effect of homocysteine concentration in follicular fluid on a degree of oocyte maturity]. Ginekol Pol 74(10):1392–1396, Ott

    PubMed  Google Scholar 

  68. Berker B, Kaya C, Aytac R, Satıroglu H (2009) Homocysteine concentrations in follicular fluid are associated with poor oocyte and embryo qualities in polycystic ovary syndrome patients undergoing assisted reproduction. Hum Reprod 24(9):2293–2302

    PubMed  CAS  Google Scholar 

  69. Haggarty P, McCallum H, McBain H, Andrews K, Duthie S, McNeill G et al (2006) Effect of B vitamins and genetics on success of in-vitro fertilisation: prospective cohort study. Lancet 367(9521):1513–1519, Mag 6

    PubMed  CAS  Google Scholar 

  70. Pacchiarotti A, Mohamed MA, Micara G, Linari A, Tranquilli D, Espinola SB et al (2007) The possible role of hyperhomocysteinemia on IVF outcome. J Assist Reprod Genet 24(10):459–462, Ott

    PubMed Central  PubMed  Google Scholar 

  71. Laanpere M, Altmäe S, Kaart T, Stavreus-Evers A, Nilsson TK, Salumets A (2011) Folate-metabolizing gene variants and pregnancy outcome of IVF. Reprod Biomed Online 22(6):603–614, Giu

    PubMed  CAS  Google Scholar 

  72. Altmäe S, Stavreus-Evers A, Ruiz JR, Laanpere M, Syvänen T, Yngve A et al (2010) Variations in folate pathway genes are associated with unexplained female infertility. Fertil Steril 94(1):130–137, Giu

    PubMed  Google Scholar 

  73. Meyer JM, Eaves LJ, Heath AC, Martin NG (1991) Estimating genetic influences on the age-at-menarche: a survival analysis approach. Am J Med Genet 39(2):148–154, Mag 1

    PubMed  CAS  Google Scholar 

  74. Kaprio J, Rimpelä A, Winter T, Viken RJ, Rimpelä M, Rose RJ (1995) Common genetic influences on BMI and age at menarche. Hum Biol 67(5):739–753, Ott

    PubMed  CAS  Google Scholar 

  75. Zerbetto I, Gromoll J, Luisi S, Reis FM, Nieschlag E, Simoni M et al (2008) Follicle-stimulating hormone receptor and DAZL gene polymorphisms do not affect the age of menopause. Fertil Steril 90(6):2264–2268, Dic

    PubMed  Google Scholar 

  76. Achrekar SK, Modi DN, Meherji PK, Patel ZM, Mahale SD (2010) Follicle stimulating hormone receptor gene variants in women with primary and secondary amenorrhea. J Assist Reprod Genet 27(6):317–326, Giu

    PubMed Central  PubMed  Google Scholar 

  77. Taylor KC, Small CM, Epstein MP, Sherman SL, Tang W, Wilson MM et al (2010) Associations of progesterone receptor polymorphisms with age at menarche and menstrual cycle length. Horm Res Paediatr 74(6):421–427

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Jabbour HN, Kelly RW, Fraser HM, Critchley HOD (2006) Endocrine regulation of menstruation. Endocr Rev 27(1):17–46

    PubMed  CAS  Google Scholar 

  79. Guo Y, Shen H, Xiao P, Xiong D, Yang T, Guo Y et al (2006) Genome-wide linkage scan for quantitative trait loci underlying variation in age at menarche. J Clin Endocrinol Metab 91(3):1009–1014

    PubMed  CAS  Google Scholar 

  80. Romano A, Delvoux B, Fischer D, Groothuis P (2007) The PROGINS polymorphism of the human progesterone receptor diminishes the response to progesterone. J Mol Endocrinol 38(2):331–350

    PubMed  CAS  Google Scholar 

  81. Schweikert A, Rau T, Berkholz A, Allera A, Daufeldt S, Wildt L (2004) Association of progesterone receptor polymorphism with recurrent abortions. Eur J Obstet Gynecol Reprod Biol 113(1):67–72

    PubMed  CAS  Google Scholar 

  82. Terry KL, De Vivo I, Titus-Ernstoff L, Sluss PM, Cramer DW (2005) Genetic variation in the progesterone receptor gene and ovarian cancer risk. Am J Epidemiol 161(5):442–451

    PubMed Central  PubMed  Google Scholar 

  83. Gennari L, Masi L, Merlotti D, Picariello L, Falchetti A, Tanini A et al (2004) A polymorphic CYP19 TTTA repeat influences aromatase activity and estrogen levels in elderly MEN: effects on bone metabolism. J Clin Endocrinol Metab 89(6):2803–2810, Giu 1

    PubMed  CAS  Google Scholar 

  84. Stolk L, Zhai G, van Meurs JBJ, Verbiest MMPJ, Visser JA, Estrada K et al (2009) Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat Genet 41(6):645–647, Giu

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Sulem P, Gudbjartsson DF, Rafnar T, Holm H, Olafsdottir EJ, Olafsdottir GH et al (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet 41(6):734–738, Giu

    PubMed  CAS  Google Scholar 

  86. Perry JRB, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF et al (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet 41(6):648–650, Giu

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Elks CE, Perry JRB, Sulem P, Chasman DI, Franceschini N, He C et al (2010) Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat Genet 42(12):1077–1085, Dic

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB et al (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41(6):729–733, Giu

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Kitawaki J, Kado N, Ishihara H, Koshiba H, Kitaoka Y, Honjo H (2002) Endometriosis: the pathophysiology as an estrogen-dependent disease. J Steroid Biochem Mol Biol 83(1–5):149–155, Dic

    PubMed  CAS  Google Scholar 

  90. Falconer H, D’Hooghe T, Fried G (2007) Endometriosis and genetic polymorphisms. Obstet Gynecol Surv 62(9):616–628, Set

    PubMed  Google Scholar 

  91. Tempfer CB, Simoni M, Destenaves B, Fauser BCJM (2009) Functional genetic polymorphisms and female reproductive disorders: part II–endometriosis. Hum Reprod Update 15(1):97–118

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Tsuchiya M, Nakao H, Katoh T, Sasaki H, Hiroshima M, Tanaka T et al (2005) Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Hum Reprod 20(4):974–978

    PubMed  CAS  Google Scholar 

  93. Vietri MT, Cioffi M, Sessa M, Simeone S, Bontempo P, Trabucco E et al (2009) CYP17 and CYP19 gene polymorphisms in women affected with endometriosis. Fertil Steril 92(5):1532–1535

    PubMed  CAS  Google Scholar 

  94. Norman RJ, Dewailly D, Legro RS, Hickey TE (2007) Polycystic ovary syndrome. Lancet 370(9588):685–697, Ago 25

    PubMed  CAS  Google Scholar 

  95. Du J, Zhang W, Guo L, Zhang Z, Shi H, Wang J et al (2010) Two FSHR variants, haplotypes and meta-analysis in Chinese women with premature ovarian failure and polycystic ovary syndrome. Mol Genet Metab 100(3):292–295, Lug

    PubMed  CAS  Google Scholar 

  96. Gu B, Park J, Baek K (2010) Genetic variations of follicle stimulating hormone receptor are associated with polycystic ovary syndrome. Int J Mol Med 26(1):107–112, Lug

    PubMed  CAS  Google Scholar 

  97. Valkenburg O, Uitterlinden AG, Piersma D, Hofman A, Themmen APN, de Jong FH et al (2009) Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum Reprod 24(8):2014–2022, Ago

    PubMed  CAS  Google Scholar 

  98. Chen Z, Zhao H, He L, Shi Y, Qin Y, Shi Y et al (2011) Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet 43(1):55–59, Gen

    PubMed  Google Scholar 

  99. Catena R, Argentini M, Martianov I, Parello C, Brancorsini S, Parvinen M et al (2005) Proteolytic cleavage of ALF into alpha- and beta-subunits that form homologous and heterologous complexes with somatic TFIIA and TRF2 in male germ cells. FEBS Lett 579(16):3401–3410, Giu 20

    PubMed  CAS  Google Scholar 

  100. Huang M, Wang H, Li J, Zhou Z, Du Y, Lin M et al (2006) Involvement of ALF in human spermatogenesis and male infertility. Int J Mol Med 17(4):599–604

    PubMed  CAS  Google Scholar 

  101. Cramer DW, Petterson KS, Barbieri RL, Huhtaniemi IT (2000) Reproductive hormones, cancers, and conditions in relation to a common genetic variant of luteinizing hormone. Hum Reprod 15(10):2103–2107, Ott

    PubMed  CAS  Google Scholar 

  102. Tapanainen JS, Koivunen R, Fauser BCJM, Taylor AE, Clayton RN, Rajkowa M et al (1999) A new contributing factor to polycystic ovary syndrome: the genetic variant of luteinizing hormone. J Clin Endocrinol Metab 84(5):1711–1715, Mag 1

    PubMed  CAS  Google Scholar 

  103. Lalioti MD (2011) Impact of follicle stimulating hormone receptor variants in fertility. Curr Opin Obstet Gynecol 23(3):158–167, Giu

    PubMed  Google Scholar 

  104. Morón FJ, Galán JJ, Ruiz A (2007) Controlled ovarian hyperstimulation pharmacogenetics: a simplified model to genetically dissect estrogen-related diseases. Pharmacogenomics 8(7):775–785

    PubMed  Google Scholar 

  105. van Disseldorp J, Franke L, Eijkemans R, Broekmans F, Macklon N, Wijmenga C et al (2011) Genome-wide analysis shows no genomic predictors of ovarian response to stimulation by exogenous FSH for IVF. Reprod BioMed Online 22(4):382–388

    PubMed  Google Scholar 

  106. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JPA et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369, Mag

    PubMed  CAS  Google Scholar 

  107. Alfirevic A, Alfirevic Z, Pirmohamed M (2010) Pharmacogenetics in reproductive and perinatal medicine. Pharmacogenomics 11(1):65–79, Gen

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Simoni M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Casarini, L., Simoni, M. (2014). Gene Polymorphisms in Female Reproduction. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics