Skip to main content

Developing Noninvasive Diagnosis for Single-Gene Disorders: The Role of Digital PCR

  • Protocol
  • First Online:
Quantitative Real-Time PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1160))

Abstract

Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96:9236–9241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Azuara D, Ginesta MM, Gausachs M et al (2012) Nanofluidic digital PCR for KRAS mutation detection and quantification in gastrointestinal cancer. Clin Chem 58:1332–1341

    Article  PubMed  CAS  Google Scholar 

  3. Wang J, Ramakrishnan R, Tang Z et al (2010) Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin Chem 56:623–632

    Article  PubMed  CAS  Google Scholar 

  4. Yung TK, Chan HC, Mok TS et al (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients. Clin Cancer Res 15:2076–2084

    Article  PubMed  CAS  Google Scholar 

  5. Lun FM, Tsui NB, Chan KC et al (2008) Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci U S A 105:19920–19925

    Article  PubMed Central  PubMed  Google Scholar 

  6. Barrett AN, McDonnell TC, Chan KC et al (2012) Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 58:1026–1032

    Article  PubMed  CAS  Google Scholar 

  7. Tsui NB, Kadir RA, Chan KC et al (2011) Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood 117:3684–3691

    Article  PubMed  CAS  Google Scholar 

  8. Henrich TJ, Gallien S, Li JZ et al (2012) Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 186:68–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Strain MC, Lada SM, Luong T et al (2013) Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One 8:e55943. doi:10.1371/journal.pone.0055943

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Hua Z, Rouse JL, Eckhardt AE et al (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Weaver S, Dube S, Mir A et al (2010) Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods 50:271–276

    Article  PubMed  CAS  Google Scholar 

  13. Whale AS, Huggett JF, Cowen S et al (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40:e82. doi:10.1093/nar/gks203

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Belgrader P, Tanner SC, Regan JF et al (2013) Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin Chem 59:991–994

    Article  PubMed  CAS  Google Scholar 

  15. Gevensleben H, Garcia-Murillas I, Graeser MK et al (2013) Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 19:3276–3284

    Article  PubMed  CAS  Google Scholar 

  16. Heredia NJ, Belgrader P, Wang S et al (2013) Droplet digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods 59:S20–S23. doi:10.1016/j.ymeth.2012.09.012

    Article  PubMed  CAS  Google Scholar 

  17. Dube S, Qin J, Ramakrishnan R (2008) Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One 3:e2876. doi:10.1371/journal.pone.0002876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Zimmermann BG, Dudarewicz L (2008) Real-time quantitative PCR for the detection of fetal aneuploidies. Methods Mol Biol 444:95–109

    Article  PubMed  CAS  Google Scholar 

  19. Tabor A, Alfirevic Z (2010) Update on procedure-related risks for prenatal diagnosis techniques. Fetal Diagn Ther 27:1–7

    Article  PubMed  Google Scholar 

  20. Alfirevic Z, Sundberg K, Brigham S (2003) Amniocentesis and chorionic villus sampling for prenatal diagnosis. Cochrane Database Syst Rev 3, CD003252

    PubMed  Google Scholar 

  21. Lo YM, Corbetta N, Chamberlain PF et al (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    Article  PubMed  CAS  Google Scholar 

  22. Alberry MS, Maddocks DG, Hadi MA et al (2009) Quantification of cell free fetal DNA in maternal plasma in normal pregnancies and in pregnancies with placental dysfunction. Am J Obstet Gynecol 200(98):e1–e6. doi:10.1016/j.ajog.2008.07.063

    PubMed  Google Scholar 

  23. Birch L, English CA, O’Donogue K et al (2005) Accurate and robust quantification of circulating fetal and total DNA in maternal plasma from 5 to 41 weeks of gestation. Clin Chem 51:312–320

    Article  PubMed  CAS  Google Scholar 

  24. Lun FM, Chiu RW, Allen Chan KC et al (2008) Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 54:1664–1672

    Article  PubMed  CAS  Google Scholar 

  25. Lo YM, Chan KC, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91. doi:10.1126/scitranslmed.3001720

    Article  PubMed  CAS  Google Scholar 

  26. Lo YM, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hill M, Finning K, Martin P et al (2011) Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin Genet 80:68–75

    Article  PubMed  CAS  Google Scholar 

  28. Daniels G, Finning K, Martin P et al (2009) Noninvasive prenatal diagnosis of fetal blood group phenotypes: current practice and future prospects. Prenat Diagn 29:101–107

    Article  PubMed  CAS  Google Scholar 

  29. Chiu RW, Chan KC, Gao Y et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A 105:20458–20463

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fan HC, Blumenfeld YJ, Chitkara U et al (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A 105:16266–16271

    Article  PubMed Central  PubMed  Google Scholar 

  31. Boon EM, Faas BH (2013) Benefits and limitations of whole genome versus targeted approaches for noninvasive prenatal testing for fetal aneuploidies. Prenat Diagn 33:563–568

    Article  PubMed  Google Scholar 

  32. Chitty LS, Hill M, White H et al (2012) Non-invasive prenatal testing for aneuploidy-ready for prime time? Am J Obstet Gynecol 206:269–275

    Article  PubMed  Google Scholar 

  33. Lench N, Barrett A, Fielding S et al (2013) The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn 33:555–562

    Article  PubMed  Google Scholar 

  34. Rozen S, Skaletsky HJ (1998) Primer3. Code available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html

  35. Sikora A, Zimmermann BG, Rusterholz C et al (2010) Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem 56:136–138

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela N. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Barrett, A.N., Chitty, L.S. (2014). Developing Noninvasive Diagnosis for Single-Gene Disorders: The Role of Digital PCR. In: Biassoni, R., Raso, A. (eds) Quantitative Real-Time PCR. Methods in Molecular Biology, vol 1160. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0733-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0733-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0732-8

  • Online ISBN: 978-1-4939-0733-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics