Skip to main content

Design and Fabrication of Biological Wires

  • Protocol
  • First Online:
Cardiac Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1181))

Abstract

Cardiac tissue engineering using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has facilitated the creation of in vitro diagnostic platforms to study novel small molecules and cardiac disease at the tissue level. Yet, due to the immaturity of hPSC-CMs, there is a low fidelity between tissue-engineered cardiac tissues and adult cardiac tissues. To address this challenge, we have developed a platform that combines both physical and electrical cues to guide hPSC-CMs towards a more mature state in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiu LL, Iyer RK, Reis LA, Nunes SS, Radisic M (2012) Cardiac tissue engineering: current state and perspectives. Front Biosci (Landmark Ed) 17:1533–1550

    Article  CAS  Google Scholar 

  2. Bronshtein T, Au-Yeung GC, Sarig U, Nguyen EB, Mhaisalkar PS, Boey FY, Venkatraman SS, Machluf M (2013) A mathematical model for analyzing the elasticity, viscosity, and failure of soft tissue: comparison of native and decellularized porcine cardiac extracellular matrix for tissue engineering. Tissue Eng Part C Methods 19(8):620–630. doi:10.1089/ten.TEC.2012.0387

    Article  CAS  Google Scholar 

  3. Ye Z, Zhou Y, Cai H, Tan W (2011) Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 63(8):688–697. doi:10.1016/j.addr.2011.02.007

    Article  CAS  Google Scholar 

  4. Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann WH (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114(1 Suppl):I72–I78. doi:10.1161/CIRCULATIONAHA.105.001560

    Google Scholar 

  5. Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6(10):e26397. doi:10.1371/journal.pone.0026397

    Article  CAS  Google Scholar 

  6. Tiburcy M, Didie M, Boy O, Christalla P, Doeker S, Naito H, Karikkineth BC, El-Armouche A, Grimm M, Nose M, Eschenhagen T, Zieseniss A, Katschinksi D, Hamdani N, Linke WA, Yin X, Mayr M, Zimmermann WH (2011) Terminal Differentiation, Advanced Organotypic Maturation, and Modeling of Hypertrophic Growth in Engineered Heart Tissue. Circ Res. doi:10.1161/CIRCRESAHA.111.251843

    Google Scholar 

  7. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90(2): 223–230

    Article  CAS  Google Scholar 

  8. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134. doi:10.1073/pnas.0407817101

    Article  CAS  Google Scholar 

  9. Thavandiran N, Nunes SS, Xiao Y, Radisic M (2013) Topological and electrical control of cardiac differentiation and assembly. Stem Cell Res Ther 4(1):14. doi:10.1186/scrt162

    Article  Google Scholar 

  10. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature 453 (7194): 524–528. doi:10.1038/nature06894

    Article  CAS  Google Scholar 

  11. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136. doi:10.1161/CIRCRESAHA.112.273144

    Article  CAS  Google Scholar 

  12. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857. doi:10.1073/pnas.1200250109

    Article  CAS  Google Scholar 

  13. Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285(6):H2355–H2363. doi:10.1152/ajpheart.00020.2003

    CAS  Google Scholar 

  14. Dolnikov K, Shilkrut M, Zeevi-Levin N, Gerecht-Nir S, Amit M, Danon A, Itskovitz-Eldor J, Binah O (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells 24(2):236–245. doi:10.1634/stemcells.2005-0036

    Article  CAS  Google Scholar 

  15. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59. doi:10.1161/CIRCRESAHA.110.237206

    Article  CAS  Google Scholar 

  16. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Masse S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10(8):781–787. doi:10.1038/nmeth.2524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Radisic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miklas, J.W., Nunes, S.S., Zhang, B., Radisic, M. (2014). Design and Fabrication of Biological Wires. In: Radisic, M., Black III, L. (eds) Cardiac Tissue Engineering. Methods in Molecular Biology, vol 1181. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1047-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1047-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1046-5

  • Online ISBN: 978-1-4939-1047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics